雪水地信越

第 36 号

2016年6月

(公社)日本雪氷学会北信越支部

雪氷北信越 第36号

目 次

巻頭言:			
災害は追い打ちかけてやってくる			
日本雪氷学会北信越支部 副支部長	上石	勲	 1
受賞者のことば:			
2016 年度北信越支部賞受賞者と選定理由	鈴木	啓助	 2
大沼賞を受賞して	松元	高峰	 5
雪氷奨励賞を受賞して	勝島	隆史	 6
北信越支部賞受賞者一覧			 7
2016 年度総会・研究発表会・製品発表検討会:			
次第・プログラム			 g
講演予稿集			 13
2015 年度事業報告			 50
2015 年度収支決算報告			 53
2016 年度事業計画	- -		 54
2016年度予算			 55
(公社)日本雪氷学会北信越支部 支部規程施行内規			 56
(公社)日本雪氷学会北信越支部 表彰規程			 57
2015-16年度(公社)日本雪氷学会北信越支部 役員			 58
北信越支部特別・賛助・購読会員名簿	-		 60
編集後記			 61

災害は追い打ちかけてやってくる

副支部長 上石 勲 (防災科学技術研究所雪氷防災研究センター長)

今年2016年1月24日には新潟県中越地方の北部で大雪となり、高速道路や国県道、市町村道が40時間に渡り通行止めになりました。長岡の雪氷防災研究センターでは、24日の日降雪量は83.2cmと、過去48年間の4番目で、61豪雪から約30年ぶりの記録となりました。このような大雪のため、消雪パイプが敷設してある道路でも雪が融けきれず残り、長岡市内では各地で大渋滞が発生しました。また、市内の小中学校は休校となったところが多かったようです。

長岡市内が大雪で大混乱した日には、福岡や長崎、熊本、鹿児島県内などの九州地方でも実は大雪となっていました。長崎では16cm、熊本市では積雪4cmとなって、熊本城も白く雪景色となっていたようです。熊本県地方ではその3か月後、4月14日と16日に大きな地震が発生しました。私は、18日から熊本にはいり、主に熊本県庁内の国の現地対策本部で地震被害の図化や生活再建支援のお手伝いをしておりました。6月中旬には梅雨前線の影響で、熊本県内でも大雨による冠水や土砂崩れが発生し、まさに、いろいろな災害が形を変えて襲ってきています。

地震が積雪期に発生すると、寒さと雪の影響をもろに受ける可能性も考えなくてはなりません。 今回、益城町では罹災証明を屋外のテントで交付していますが、積雪地域の冬期にはとても不可能 です。積雪期の地震としては、5年前の2011年3月12日の長野県北部地震があり、地震と大雪の 複合災害によって雪崩や家屋の倒壊が多発しました。また、熊本の地震は都市型の地震災害でもあ ります。熊本市は新潟市と同様に政令指定都市ですし、大きな被害を受けた益城町は熊本市のベッ トタウンです。熊本のような震度7の2回の地震が積雪期の都市に発生したらになにが発生するか、 も想定しておくことも重要なことではないでしょうか。

熊本のように同じ場所に災害が続けて発生することは、10年前の新潟県もそうでした。中越地震は 2014年 10月 23日に発生していますが、中越地方では、地震の前にも大雨があり、土砂災害を助長したともいわれています。また、その後、中越沖地震も発生し、大雪と大雨も毎年のように、新潟県を襲いました。「また、新潟か」と思うほど、いろいろな災害がこれでもかというほど続きました。

以前、人と防災未来センターの河田惠昭センター長とお話ししたときに、「災害の神様は非情だ。」とおっしゃっておりました。同じところに災害が続けて襲うこともそうです。「災害は忘れた頃にやってくる」は寺田寅彦が言い表していますが、私は「災害は忘れない頃にもやってくる」ということばを使っていました。ただ、10年前の新潟県や熊本県のことを考えると「災害は追い打ちかけてやってくる」なのかと思います。新潟県をはじめ北信越は追い打ちをかけてくる災害に対して、体制や取り組みが進んでおり、人材や組織もそろっています。熊本地震後、熊本には新潟県や県内市町村、民間の方も応援に入って、経験を生かした援助を各地で展開しました。これは、2年前の2014年の関東甲信の大雪の時も同様で、山梨県内では新潟県内から応援に向かった除雪車が大活躍していました。大雪災害をはじめとしたいろいろな災害に対処した経験。これが今求められていると思います。

2016年度日本雪氷学会北信越支部賞受賞者と選定理由

2016年4月7日,上越市雁木通りプラザにおいて,2016年度北信越支部賞受賞候補者選定委員会(鈴木啓助(委員長),飯田肇,石坂雅昭,和泉薫,横山宏太郎,上石勲(文書審議))が開催された.推薦された支部賞候補者から,推薦書ならびに参考資料に基づいて慎重に審議した結果,2件が受賞候補に選定され,5月11日~5月18日の2016年度第1回北信越支部理事・幹事合同会議で承認された.受賞者と選定理由は以下のとおりである.

大 沼 賞:松元高峰氏(新潟大学災害・復興科学研究所,特任准教授)

件 名:雪氷内における水循環プロセスとそのモデリングに関する研究

理 由:雪氷圏における様々な時間的・空間的スケールの水循環過程は,水資源問題のみならず地球環境変動や自然災害とも密接な関係を有する重要な研究課題である.松元氏は,山岳氷河,多年性雪渓,季節積雪における雪氷の融解から流出までのプロセスの解明とそれらのモデリングに関する研究を,約20年間にわたり精力的に実施してきた.

雪氷の融解については、様々な雪氷表面における熱収支特性を現地観測に基づいて明らかにするとともに、融解量分布を推定するための気温と日射量のみを用いた実用的モデルの構築や、短時間の融雪強度変化を推定するためのセンサ開発を行っている。また、総観規模の気象条件や森林が融解量・熱収支に及ぼすに影響についても明らかにしている。

雪氷内の水の浸透・流出プロセスについては、積雪層内における水の浸透過程に関して 広域適用が可能な簡便モデルを構築し、上記の融解量分布モデルと組み合わせることで鉄 道沿線における融雪災害対策への応用を進めている.

また、化学成分や浮流土砂を指標とする氷河内・底面流出システムの季節変化を解明するとともに、氷河流域における夏季・年間水収支の推定と流出モデリングや、氷河流域からの浮流土砂流出量変動の復元などにおいても実績をあげている.

以上より、松元氏は、雪氷内における水循環プロセスとそのモデリングに関して、現場を重視した地道な研究を長年実施して多くの研究成果を上げてきた。また、防災への適用を意識した斬新な実用的モデリング手法も提示してきた。これは大沼賞に該当する研究成果であると考えられるため、ここに大沼賞として選定した。

主要参考論文

- Takane Matsumoto, Yoshinori Iizuka, Yuji Kodama, Yaroslav D. Muravyev, Keisuke Suzuki, 2002: Runoff and chemical characteristics of meltwater draining from Koryto Glacier, Kamchatka Peninsula, in 1996 and 1997. Bulletin of Glacier Research, 19, 71-80.
- 2) Takane Matsumoto, Renji Naruse, Keiko Konya, Satoru Yamaguchi, Tomomi Yamada, Yaroslav D. Muravyev, 2004: Summer water balance characteristics of Koryto Glacier, Kamchatka Peninsula, Russia. *Geografiska Annaler*, **86A**, 181-190.
- 3) Takane Matsumoto, Hiroshi Fukami, Fernando Escobar, Satoru Yamaguchi, Renji Naruse, 2007: Hydrological regime characteristics due to the development of

proglacial lakes at Glacier Soler, Northern Patagonia Icefield, Chile. *IAHS Publication*, **318**, 49-65.

- 4) 松元高峰,河島克久,外狩麻子,島村誠,2010:気温・日射量を指標とする表面融雪量モデルと積雪層浸透モデルとを組み合わせた積雪底面流出量の推定.雪氷,72,255-270.
- 5) Takane Matsumoto, Norifumi Sato, 2012: Annual water balance of the Glaciar Exploradores drainage basin, Chilean Patagonia. Aniya, M. and Naruse, R. (eds): Glaciological and Geomorphological Researches in Patagonia: 2003-2009, 146-153.

雪氷奨励賞:勝島 隆史氏(国立研究開発法人森林総合研究所 研究員)

件 名:積雪内部の水みち形成過程に関する実験的研究

理 由:北信越平野部をはじめとして暖候地積雪地域の雪害を考える上で積雪内部の水の移動を考慮した積雪モデルの開発は非常に重要である。しかし従来の積雪モデルにおける鉛直一次元の水の移動では、基本的に均一な浸透のみが考慮され、水みちなどによる不均一な移動は表現されてこなかった。このため温暖な積雪地域では、積雪は上部から順次ざらめ化し、ざらめ雪の占める割合が過大に評価される傾向があった。また、濡れ雪への浸透と乾き雪への浸透を同一に取り扱っているために、融雪直後の積雪内部への水の浸透についてのモデルの再現性は不十分であった。

こうした中で、勝島氏は、積雪内部の各層が蓄え得る水の量に閾値を設け、閾値を超えた水に関しては擬似的な水みちを通って積雪外に排出されるという新たな浸透過程を導入した積雪モデルを開発した¹⁾。それにより、積雪内部のしまり・ざらめの互層構造が再現されるなど、温暖地域の積雪構造に関して積雪モデル内での再現性は従来に比べ大きく向上した.

また、同氏は濡れ雪内の水移動に関する実験 2)に加え、従来あまり行われてこなかった乾き雪への水の浸透過程に関する詳細な実験を行い、雪には土壌と同じくsuctionに"water-entry value"(水浸入値)が存在すること、乾いた雪に水が浸透する際にはこの"water-entry value"を超える必要があり、濡れ雪に水が浸透する場合とは現象が異なることを明らかにした。さらに"water-entry value"と積雪粒径との関係も明らかにするなど、乾き雪への水の浸透のモデル化に必要な条件の定量化に大きく貢献する成果も上げている 3,4).

以上のように勝島氏がこれまで行った積雪中における水みち形成条件に関する定量的な 測定とそれに基づく新たなモデルの提案は、積雪内部の不均一な水の移動の現象解明とそ のモデル化に大きな成果をもたらしている.よって、今後の更なる積雪内部の水の移動に 関する研究への貢献を期待してここに雪氷奨励賞として選定した.

主要参考論文

- 1) Katsushima T., T. Kumakura, Y. Takeuchi, 2009. A multiple snow layer model including a parameterization of vertical water channel process in snowpack. *Cold Reg. Sci. Technol.*, **59**, 143-151.
- 2) Yamaguchi, S., T. Katsushima, A. Sato, T. Kumakura, 2010. Water retention curve of

snow with different grain sizes. Cold Reg. Sci. Technol., 64, 87-93.

- 3) 勝島隆史・山口悟・熊倉俊郎・佐藤篤司, 2010. 粒子直径が水浸入圧と水みち形成に与える影響, 雪氷北信越, **30**, 38.
- 4) Katsushima, T., S. Yamaguchi, T. Kumakura, A. Sato, 2013. Experimental analysis of preferential flow in dry snowpack. *Cold Reg. Sci. Technol.*, **85**, 206-216.

大沼賞を受賞して

新潟大学 災害·復興科学研究所 松元 高峰

このたびは日本雪氷学会北信越支部大沼賞をいただき、誠にありがとうございます。御 推薦いただいた方々、御選考いただいた方々、また北信越支部会員の皆様に厚く御礼を申 し上げます。

受賞の対象となりました「雪氷内における水循環プロセスとそのモデリングに関する研 究」とは、20 年あまり前に北海道大学低温科学研究所で大学院生として研究というものを 始めてから今に至るまで、私が取り組んできた研究トピックのほとんど総てということが できます。修士課程での研究テーマは「大雪山西斜面における融雪熱収支の高度分布特性」 という内容でしたが、そこで初めて取り組んだ雪氷の融解プロセスの観測は、博士課程の ときに山口悟さん(現在、防災科学技術研究所)たちと進めたカムチャツカ半島やパタゴ ニアでの氷河研究でも、また河島克久先生に拾っていただいて新潟大学に来てから従事し ている JR 東日本との共同研究などでも基本的な調査項目として続けてきました。紺屋恵子 さん(現在、JAMSTEC)の修士論文をお手伝いする形で関わった「気温と日射量とを用いた 簡便な融解量モデル」は、その後、あれこれ改良したりしつつ日本各地の積雪に適用して おり、むしろ私の方が「だいぶ喰わせてもらっている」手法になっています。一方、雪氷 内の浸透・流出プロセスについては、学位論文のテーマとして海洋性温暖氷河の水収支や 流出システムの季節変化過程についての研究を行なったのに加えて、最近では河島先生や 伊豫部勉さん(現在、京都大学)の御協力を得て、積雪層内の浸透プロセスに貯留関数を 適用して簡便にモデル化するという試みを進めてきました。上述の融解量モデルと組み合 わせることで、気温・日射量・雨量の観測データがあれば、積雪底面流出量の時間変化が 推定できるようになり、現在はこれらを全層雪崩や融雪期の斜面災害の危険度評価などに 応用すべく取り組んでおります。

こうして挙げましたように、雪氷内の水循環プロセスに関わるいくつかのトピックについて研究を続けてきたとは言うようなものの、しかし実のところは、論文に仕上げる作業が遅々として進んでいないとか、あるいは論文にできないまま放ったらかしとかいうような内容ばかりで、何ともお恥ずかしい有様です。こんなことで大沼賞の名前まで汚してしまうようなことがあっては申し訳ありません。噺家や役者の襲名ではありませんが、「大きな看板を背負ったらあいつも少しは精進して芸が大きくなった」と皆様にお認めいただけますよう、遅ればせながら努力していく所存です。どうか今後とも厳しい御指導御鞭撻を賜りますよう心よりお願い申し上げます。

雪氷奨励賞を受賞して

森林総合研究所 森林防災研究領域 勝島隆史

この度は日本雪氷学会北信越支部雪氷奨励賞を授与していただき誠にありがとうございます。まず、選考委員会の皆様および、賞のご推薦を頂いた方々に深くお礼申し上げます。

受賞対象となった「積雪内部の水みち形成過程に関する実験的研究」は、乾雪の積雪層内において水みちが形成される物理過程や形成条件を実験的に明らかにしようとするもので、私が長岡技術科学大学の修士課程、博士課程に在籍中に行った研究です。積雪内の水分移動について、1960年代の若浜先生を中心とする北海道大学低温科学研究所による一連の研究により、湿雪では皮膜流下が、乾雪では水路流下が形成し、湿雪と乾雪とでは水分移動過程が大きく異なることが示されています。本研究は、この研究成果に立脚したうえで、土壌物理学の研究領域において近年明らかになった水みち形成理論を積雪内の水みち形成に応用したものです。ふるい分けした雪試料を用いた室内浸透実験により、乾雪において水みちが形成する条件では毛管圧の閾値として機能する水侵入圧が顕在することと、雪粒子の粒径に対する水侵入圧の依存性を実験的に明らかにしました。また、これまで水みちの形成には止水面の存在が必要であるとされてきましたが、粒形のある程度大きな乾雪では、止水面がなくても水みちが形成することを実験により示しました。実験では、極端に小さな粒形の雪試料も実験条件に加えたため、-10~-20℃の低温室で気の遠くなるようなふるい分け作業をひたすら行いました。実験を通じて、雪氷研究は体力勝負であると認識するとともに、なんとしてでもやり抜く根性のようなものを得たように思います。

このような研究成果を得ることができたのは、良く言えば挑戦的研究と言えるのかもしれないのですが実際にはかなり無知で無謀な研究に対して、とことん議論頂いた長岡技術科学大学の恩師、熊倉先生のご指導とご理解、そして、この研究に対するご協力と建設的な助言を頂いた山口悟博士をはじめとする防災科学技術研究所雪氷防災研究センターの皆様のおかげだと思います。学生時代に、最先端の雪氷学、地球惑星科学に対する幅広い知見と、とことん原理原則を追及する貪欲な研究姿勢を目の当たりにできたことが、今の私の基盤になっているのだと思います。この場を借りて、深く感謝申し上げます。

現在は、雪氷防災研究センターの安達さんの協力のもと、雪氷用 MRI による非破壊高速三次元計測技術を用いて、自然積雪内における水みちの形成と消散を明らかにする研究を進めています。積雪内の水分移動の全容は、まだ掴みきれていませんが、全層雪崩や地すべり、積雪流域からの流出など、積雪地域の融雪期災害の防災対策を進めるうえで解明すべき重要課題の一つと考えています。研究成果を、実際の防災対策の現場に一刻も早く適応できるよう研究を進めていく所存ですので、今後とも、ご指導ご鞭撻を賜りますようお願い申し上げます。

(公社) 日本雪氷学会北信越支部賞受賞者

1993 年度 雪氷技術賞:田村 盛彰

大 沼 賞:五十嵐 高志

1994年度 大 沼 賞:大関 義男,新潟県中山間地農業技術センター気象観測チーム

雪氷功労賞:阿部 勉

1995年度 雪氷技術賞: 村本 健一郎, 椎名 徹, (株) インテック, ソーラーシステム㈱ (代表:

湯本 喜久雄),農事組合法人グリーンファーム(代表:橘守)

大 沼 賞:須藤 伊佐夫,遠藤 徹

雪氷功労賞:高瀬 信忠

1996年度 大 沼 賞:北原 拓夫,小林 俊市

雪氷功労賞:古川 征夫

1997年度 大 沼 賞:和泉 薫,納口 恭明

雪氷功労賞:遠藤 治郎,鈴木 哲

1998年度 雪氷技術賞:対馬 勝年,木内 敏裕

大 沼 賞:河島 克久

雪氷功労賞:和田 惇,国際雪形研究会

1999 年度 大 沼 賞:町田 誠,清水 増治郎,上村 靖司

雪氷功労賞:新宮 璋一

2000 年度 雪氷技術賞: 福井県雪対策・建設技術研究所雪対策研究グループ (代表: 杉森 正義,

研究推進者: 宮本 重信他)

大 沼 賞:石坂 雅昭

雪氷功労賞:中村 勉,梅村 晃由

2001年度 雪氷技術賞:石丸 民之永

大 沼 賞:上石 勲,立山積雪研究会(代表:川田 邦夫)

雪氷功労賞:小林 詢,神田 健三

2002年度 大 沼 賞:竹井 巌,佐藤 国雄

雪氷功労賞:河田 脩二, 山田 穣

2003年度 雪氷技術賞:山田 忠幸

大 沼 賞:横山 宏太郎

雪氷功労賞:早川 典生

2004年度 大 沼 賞:熊倉 俊郎,中井 専人

雪氷功労賞:小林 俊一

2005 年度 大 沼 賞: 小南 靖弘

雪氷功労賞:前田 博司

2006 年度 雪氷技術賞:松田 正宏

大 沼 賞:竹内 由香里,松井 富栄

雪氷功労賞:遠藤 八十一

2007年度 雪氷技術賞: 貴堂 靖昭, 村井 昭夫

大 沼 賞:若林 隆三, 佐藤 和秀

雪氷功労賞:福嶋 祐介

2008 年度 雪氷技術賞:宮崎 伸夫

大 沼 賞:庭野 昭二

雪氷功労賞:対馬 勝年

2009 年度 雪氷技術賞:高田 英治

大 沼 賞:鈴木牧之記念館

雪氷功労賞:川田 邦夫,横山 宏太郎

2010年度 大 沼 賞:飯田 肇

雪氷奨励賞:山口 悟,渡辺 幸一

雪氷功労賞:杉森 正義

2011年度 雪氷技術賞:株式会社大原鉄工所雪上車グループ

大 沼 賞:樋口 敬義

雪氷奨励賞:平島 寛行

2012 年度 雪氷技術賞:加藤 務

大 沼 賞:(社)新潟県融雪技術協会

雪氷奨励賞:伊豫部 勉

雪氷功労賞:佐藤 篤司

2013年度 雪氷技術賞:越後雪かき道場

大 沼 賞:本田 明治

雪氷功労賞:丸山 敏介

2014 年度 雪氷技術賞:大川 滋

雪氷奨励賞:池田 慎二,福井 幸太郎

2015 年度 雪氷技術賞:安達 聖

大 沼 賞:島田 亙

雪氷奨励賞:佐々木 明彦

2016 年度 大 沼 賞: 松元 高峰

雪氷奨励賞:勝島 隆史

2016 年度(公社)日本雪氷学会 北信越支部

総会 · 授賞式 · 研究発表会 · 製品発表検討会

2016 年 6 月 4 日(土) 妙高市勤労者研修センター

2016 年度(公社)日本雪氷学会 北信越支部大会

主催:日本雪氷学会北信越支部

後援:妙高市,雪崩・地すべり研究推進協議会

日 時: 2016年6月4日(土)10:00~19:00

場 所: 妙高市勤労者研修センター (妙高市上町 9-3)

第1会場:大研修室 第2会場:2F研修室A

次 第:

研究発表・製品発表検討会 (第1および第2会場 10:00~12:00)

総 会 (第1会場 13:20~14:00)

支部賞授賞式 (第1会場 14:00~14:15)

大 沼 賞:松元 高峰 氏 (新潟大学 災害·復興科学研究所 特任准教授)

件名:雪氷内における水循環プロセスとそのモデリングに関する研究 雪氷奨励賞:勝島 隆史 氏 (国立研究開発法人森林総合研究所 研究員)

件名:積雪内部の水みち形成過程に関する実験的研究

研究発表・製品発表検討会 (第1および第2会場 14:20~16:30)

研究技術交流会 (割烹寿司やまと 17:00~19:00)

研究発表・製品発表検討会プログラム

(1 鈴:7分, 2 鈴:9分, 3 鈴:12分)

座長:島田 亙(富山大学)

《第1会場(大研修室)》

- I 雪氷物理(10:00-10:50)
- 1. 氷 Ih における印加電場に垂直な誘電応答信号 竹井巖(北陸大・薬)
- 2. カーリングストーンのカール機構 左右摩擦異方性説と前後摩擦異方性説の融合によるカールの説明
 - ○対馬勝年·森克徳
- 3. 赤外分光法による氷の赤外吸収スペクトル測定 上村靖司(長岡技科大)・西間木悠輔・○千葉健介(長岡技科大・院)
- 4. 氷のエッチピットを用いた結晶方位の測定 a 軸方位の算出-〇高田守昌・東信彦 (長岡技科大)
- **Ⅱ 教育普及・雪氷化学(11:00-12:00)** 座長:高田 守昌(長岡技科大学)
- 5. カワウ追払いに特化した氷弾発射装置の開発と実証試験

解の影響ー

上村靖司(長岡技科大)・西間木悠輔・○中村友洋(長岡技科大・院)

- 6. 圧力センサ装着スコップによる除雪作業量計測の試み 上村靖司(長岡技科大)・○村井優(長岡技科大・院)・赤川祐太(長岡技科大・工))
- 7. 立山室堂平における積雪断面観測 -2014年11月と2015年4月の比較による一部融

浅地泉(北海道大環境科学院)・○島田亙(富山大院・理工)・朴木英治(富山市科学 博物館)・青木一真(富山大院・理工)

- 8. 立山・室堂平における積雪層中のイオン成分およびアルデヒド類濃度 ○渡辺幸一・平井泰貴・高辻航平・山崎暢浩・矢地千奈津・江尻遼介・金聖鈞・宋笑 晶(富山県立大)・島田亙・青木一真・川田邦夫(富山大)
- 9. 回転翼航空機を利用した富山県上空の過酸化物濃度の測定(Ⅲ) ○渡辺幸一・宋笑晶・角山沙織・矢地千奈津・金聖鈞・深井謙佑・西部美雪(富山県 立大学)

Ⅲ 積雪の構造・融雪1(14:30-15:30)

座長:松元 高峰(新潟大学)

- 10. 日本の積雪観測・断面観測測定結果長期データベースの作成
 - ○山口悟(防災科研・雪氷)・小杉健二(防災科研・雪氷)・的場澄人(北海道大・低 温研)・青木輝夫 (岡山大)・竹内由香里 (森林総研)・庭野匡思 (気象研)
- 11. 斑点ぬれ雪の動画観察報告
 - ○藤野丈志((株) 興和)・亀田貴雄(北見工大)
- 12. 南極・昭和基地でみられた粗大化した雪粒子
 - ○竹内由香里(森林総研十日町試験地)·荒川逸人(国立極地研究所)
- 13. 立山室堂北斜面における植生と消雪の関係および融雪特性
 - ○杉浦幸之助・初見紗織・和田直也(富山大)
- 14. 積雪期における雪面の熱収支解析
 - ○西村基志・佐々木明彦・鈴木啓助(信州大)

IV 融雪2·積雪分布·建築(15:40-16:30) 座長:河島 克久(新潟大学)

- 15. 2次元水分移動モデルによる野外散水実験の再現計算
 - ○平島寛行 (防災科研・雪氷)・石井吉之 (北海道大・低温研)・山口悟 (防災科研・ 雪米)
- 16. 富山県および岐阜県における積雪上の降雨現象
 - ○杉浦幸之助・宮川卓也(富山大)
- 17. 積雪変質モデルを用いたリアルタイム積雪荷重計算
 - ○平島寬行 (防災科研・雪氷)・伊豫部勉 (京都大)・河島克久 (新潟大・災害研)・ 上石勲 (防災科研・雪氷)

- 18. 気温を考慮した等価積雪密度の推定について
 - ○松下拓樹・池田慎二・石川茂・石田孝司(土木研究所)・和泉薫(新潟大)

《第 2 会場(2F 研修室 A)》

Ⅴ 気候・雪渓・利雪・森林(10:00-11:00)

座長:杉浦 幸之助(富山大学)

- 19. 上高地・槍・穂高地域における気温の鉛直構造
 - ○黒雲勇希·佐々木明彦·鈴木啓助(信州大)
- 20. 白山千蛇ヶ池雪渓の越年規模の経年変化
 - ○小川弘司 (石川県立大・院)・伊藤文雄 (元福井大教育地域科学部)
- 21. 天皇の巡幸記録からわかる明治初期の天然雪氷利用について(1) 明治 11 年の新 潟県内における天然雪氷利用状況 -

和泉薫 (NPO なだれ防災)

- 22. 南岸低気圧の通過に伴なう冠雪害の発生域
 - ○松元高峰(新潟大・災害研)・伊豫部勉(京都大・工)・河島克久(新潟大・災害研)
- 23. 気象条件に対するスギ冠雪重量の成長と落下の関係
 - ○勝島隆史(森林総研)・嘉戸昭夫(富山県農林水産公社)・相浦英春(富山県農林水産公社)・相浦英春(富山県農林水産公社)・相浦英春(富山県農林水産公社)・台木党(森林総研)・金木党(森林総研)

VI 雪崩(11:10-12:00)

座長:山口 悟(防災科研・雪氷)

- 24. 遠赤外線融雪装置による崩落雪対策
 - ○町田敬(町田建設(株))・関根伸幸(新潟国道事務所)・大崎智(長岡国道事務所湯 沢出張所)・町田誠・松井富栄(町田建設(株))・新井智・宮谷繁・北谷公昭((株) ユニ・ロット)
- 25. 雪崩の規模推定のための数値シミュレーション結果の比較
 - 〇石田孝司・松下拓樹・池田慎二(土木研究所)・田中頼博(奥山ボーリング (株))
- 26. 2015 年ネパール地震時に発生した雪崩の被害と積雪深の関係
 - ○伊藤陽一・山口悟 (防災科研・雪氷)・西村浩一・藤田耕史 (名古屋大)・和泉薫・河島克久 (新潟大)・上石勲 (防災科研・雪氷)
- 27. 全層雪崩の発生に至る積雪グライドの加速過程
 - ○河島克久 (新潟大)・伊豫部勉 (京都大)・松元高峰 (新潟大)・渡邊美徳・鈴木修・ 鈴木博人 (東日本旅客鉄道 (株))

Ⅶ 計測・降雪 1(14:20-15:20)

座長:中井 専人(防災科研・雪氷)

- 28. 降雪深強度計の開発 -2015-2016 積雪板式時間降雪深計との比較-
 - ○石丸民之永・山崎正喜・羽賀秀樹(新潟電機(株))・熊倉俊郎(長岡技科大)
- 29. 光学式ディスドロメーターにおける固体降水粒子の粒径評価に関する考察

- ○横田佑多(長岡技科大・院)・熊倉俊郎(長岡技科大)・石丸民之永(新潟電機(株))
- 30. 固体降水種別の粒径分布に関する研究
 - ○須貝祐介・熊倉俊郎(長岡技科大)・本吉弘岐・中井専人(防災科研)・石坂雅昭
- 31. 連続画像処理による降雪粒子観測装置における CCD カメラの画像取得頻度の違いによる測定性能へ影響
 - ○本吉弘岐(防災科研・雪氷)・石坂雅昭・椎名徹(富山高専)
- 32. 固体降水国際比較実験プロジェクトのための上越サイトにおける捕捉特性調査
 - ○山下克也(防災科研)・中井専人(防災科研)・横山宏太郎(防災科研)

Ⅷ 降雪 2(15:30-16:30)

座長:山下 克也(防災科研・雪氷)

- 33. ヒーター付き漏斗を持つ降水量計の濡れ損失:人工降雪を用いた実験室測定
 - ○中井専人(防災科研・雪氷)・熊倉俊郎・広川貴大(長岡技科大)
- 34. 関東甲信地方に大雪をもたらす Cold-Air Damming
 - 〇本田明治(新潟大・理)・山崎哲(JAMSTEC)・吉田聡(JAMSTEC)・岩本勉之(北海道紋別市)
- 35. 新潟県沿岸に停滞した帯状降雪雲の特徴 −2013 年 1月 9日の事例− ○畠山光 (新潟大・院)・○本田明治 (新潟大・理)・岩本勉之 (北海道紋別市)・浮田 甚郎 (新潟大・理)
- 36. 降雪種と新雪密度の定量的関係と霰と雪片の関与の違い
 - ○石坂雅昭・本吉弘岐・山口悟・中井専人(防災科研・雪氷)・椎名徹(富山高専)・ 村本健一郎(金沢大)
- 37. 新雪の比表面積と降雪種の関係 (3)
 - ○山口悟・石坂雅昭・本吉弘岐(防災科研・雪氷)・八久保晶弘(北見工大)・青木輝夫(岡山大)

氷 Ih における印加電場に垂直な誘電応答信号竹井巖(北陸大薬)

氷 Ih は、水分子(酸素原子)位置に関して六方晶系(国際記号: $P6_3/mmc$)に属する水素結合性の結晶で、プロトン位置は無秩序状態にある。氷 Ih の誘電的性質は、k Hz 周波数領域でプロトン挙動による Debye 型の誘電分散(-10 $^{\circ}$ Cで緩和時間 5×10^{-5} sec、100 程度の誘電分散強度)を示すことが知られている。

一般に誘電体の誘電測定は、印加した電場方向の誘電応答に対して実施される。今回、氷 Ih 単結晶の立方体試料を用いて、電場に垂直な方向の誘電応答を調べたところ、k Hz 周波数領域での応答信号が検出されたので報告する。

【測定】 氷単結晶を立方体 $(1 \text{ cm} \times 1 \text{ cm} \times 1 \text{ cm})$ に整形し、c 軸 方向と c 軸に垂直な方向の 2 方向に対面電極を付けた試料を用意した。1 Hz - 1 MHz の範囲の変動電場(印加電圧 V_0 : 5 V_{p-p})を c 軸方向の 2 端子電極(正方形)に印加し、印加電場に垂直な方向のガード付き 4 端子電極(円形)で応答信号 V_s を調べた。測定には、周波数特性分析器 (Frequency Response Analyzer) が用いられ、-13 \mathbb{C} から-56 \mathbb{C} の温度範囲で実施された(図 1)。

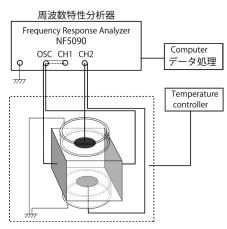


図1 試料形状と測定システム

【結果】検出された応答信号 V_s/V_0 は、その利得 (Gain: $20\log_{10}(V_s/V_0)$) が-21 °Cにおいて 1 kHz 付近にピークを持つ周波数依存性を示した(図 2)。この応答信号のピーク強度は、印加電圧の 1.2%で、オシロスコープで確認可能な強度であった。ピーク周波数 f_0 は温度の低下とともに低周波側にシフトし、またピーク強度は温度低下とともに減少して、-50 °C以下では観測が困難となった。応答信号の位相は、ピーク周波数 f_0 より高周波数側では印加電圧の位相に対して負(遅れ)を、低周波数側では正を示した。図2には、測定セル(無試料)の応答信号

が BG として示されている。 V_s/V_0 は、次の式でデータ解析できた。

$$\frac{V_{s}}{V_{0}} = \frac{A}{\sqrt{\left(\frac{f}{f_{0}} - \frac{f_{0}}{f}\right)^{2} + \left(2\zeta\right)^{2}}} + \frac{B}{\sqrt{1 + \left(\frac{f_{BG}}{f}\right)^{2}}}$$

A, B, ζ , f_0 , f_{BG} はフィッティングパラメータで、fは周波数である。 -21° Cで、A=0.0246, $f_0=1065$ (Hz), $\zeta=1.04$, B=0.000698, $f_{BG}=8.71\times10^4$ (Hz)を得た。ピーク周波数 f_0 を用いて定義される特性時間 $1/(2\pi f_0)$ の温度依存性から、活性化エネルギーが0.30 eV と見積もられた。同じ氷結晶魂から切り出された氷試料の誘電緩和時間の活性化エネルギーは0.58 eV であった。【考察】このピーク現象の温度依存性やそのデータ解析の結果は、氷中のプロトン挙動に関係していると考えられる当現象の発現機構(0.30 eV)が、Debye 型誘電分散で期待されるプロトン挙動の機構(0.58 eV)とは異なるらしいことを示している。

氷 Ih 氷の誘電的性質において、このような印加電場に垂直な方向での誘電応答信号の検出の報告例は、これまで知られていない。この新たな氷中のプロトン挙動の実験的知見は、氷の誘電的性質のさらなる解明に資するものと期待される。

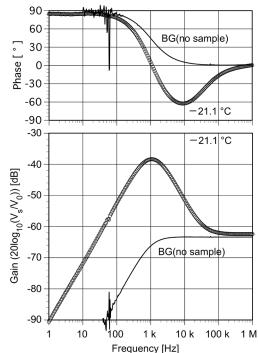


図2 応答信号 V_sの利得と位相。 BG は無試料時の応答信号。

カーリングストーンのカール機構

左右摩擦異方性説と前後摩擦異方性説の融合によるカールの説明 [○]対馬勝年、森克徳

1. はじめに

カーリングストーンのカール距離が(1)1m 内外になること、(2)自転速度が大きすぎるとカール距離がわずかに短くなるとの二大問題 LR 説と FB 説の融合によって説明できると考えた。

2. 左右摩擦差によるカール(LR 説)

自転しながら滑るストーンは左右に加速側と減速側を生ずる。一方、氷上のストーンの摩擦特性として高速域では摩擦一定、低速域では低速になるほど摩擦が大きくなる速度特性がある。この特性のため加速側の摩擦が小さく、前進距離がわずかに長い。減速側は摩擦が大きく、前進距離がわずかに短い。このためストーンは減速側つまり自転の方向にカールすることを昨年の大会で発表した。この左右進行距離の差がカール距離のほとんどを説明する。

カーブして進む例を挙げよう。偉径輪軸ユニッ トをころがすと輪径の短い方にカーブして進む。 輪径が等しい自動車の場合は、左右の車輪の回転 数を違えて回転数の少ない方へカーブする。これ らに共通するカーブの仕組みは左右端の進行距離 に差があり、進行距離の短い側にカーブする点で ある。これらは左右間の距離が一定という拘束条 件下での運動である。カーリングストーンの場合 も左右間の距離一定という拘束条件下で左右端の 進行距離に差が存在するためカールを生ずると説 明(左右摩擦異方性起因説、LR説) されてきたも ので、カールの主原因となる。Harrington(1924) はストーンの運動を総合的に解析し、左右の速度 差がカールの原因であると主張した。これはスト ーンの運動解析と基礎実験に基づいたものだった が、FB 説側からは真価が理解されなかったとい う歴史的な経緯がある。

3. 前後摩擦差によるカール (FB 説)

ストーンは制動を受けながら滑っているため、重心はわずかに前方へ d だけ移動する。ストーンの重心の高さを h、摩擦係数を μ とすると、 $d=\mu$ h の関係がある。前方の荷重がわずかに大きくなり、後方の荷重はその分だけ小さくなる。自転に対する影響でみると、前方のブレーキが大きく後方の減速が小さいため、前方を支点に後方が回転の方向にわずかにずれる。上部後方から見ると中心は

自転と反対方向にずれる。歴史的にはカーリング ・ストーンのカールが問題とされる以前からテー ブル上を自転しながら滑走するコップ(伏せたコッ プ)のカールの説明として知られていた。プラス チックのコップをテーブル上に滑らせると自転と 反対方向ヘカールすることが容易に確認される。 コップの場合、 $\mu = 0.3$ 内外と大きいから、「前の めり効果」が強く表れる。しかし、これをカーリ ングストーンに当てはめようとすると、自転の方 向にカールするストーンの運動を説明できない不 都合を生ずる。そこで Gilbert はカーリングスト ーンの場合は前方ではなく後方の摩擦が大きくな っているはずだと主張した。この論法は多くの支 持を受けたのであるが、その理由は「他に有力な カール説明法がないとの思い込み」が強かったか らである。筆者らは前方の摩擦が大きいとしてカ ーリングストーンに適用し、カール距離を与える 式を導いた。氷上のストーンの摩擦係数は 0.01 内 外と小さいから重心の前方移動も僅かでカールも 大変小さい。Penner(2001)の理論でも示された ことであるが、Gilbert(1930)以来多くの研究者に よる「左右摩擦差は横向の力(摩擦成分)を生じな いからカールを説明できない」という呪縛のため、 前後摩擦差で主カールを説明しようと悩んだ。左 右摩擦差が主カールを与え、前後摩擦差は副カー ルを生ずることを受け入れれば、(1),(2)の問題が 同時に解決される。これを表題のように学説の融 合と名付けてみた。前後摩擦差によるカールは自 転の角速度ωを含み、自転と逆方向のカールを与 える。通常の競技に使われる停止までに2~4回 転程度の小さな自転角速度ではカール距離に与え る影響は小さいが、自転角速度が大きくなれば認 められる程度のカール距離となる。これが前進距 離の差から生ずる大きなカールに対する修正作用 となって働き、自転速度が増すとわずかにカール 距離を小さくするものと解釈される。

4. LR 説と FB 説の融合

LR 説が自転方向への主カールを与え、FB 説は 自転と反対方向への小さなカールを与える。LR 説と FB 説の融合により、(1)カール距離の大きさ と(2) 自転角速度が大きくなればカール距離が逆 に短くなるという難問への解答が与えられる。

赤外分光法による氷の赤外吸収スペクトル測定

上村靖司(長岡技科大)·西間木悠輔·○千葉健介(長岡技科大·院)

1. はじめに

氷の赤外吸収スペクトル測定には、ラマン分光 法、赤外分光法(分散型)が用いられてきたが、前 者の場合レーザー光のエネルギーが強いため試 料を損傷しやすく、後者は試料の損傷が少ないが 波数分解能が低くノイズが大きいという問題が ある.赤外分光法の一つであるフーリエ変換型 (FTIR)は分散型よりも正確な測定ができるが、 装置の特性上、氷点下では使えないという欠点が あり、氷への適用事例は見当たらない.

本研究では、測定環境を工夫して常温下で FTIR による氷赤外吸収スペクトル測定を行った。 単結晶 C 軸方位での測定結果について報告する.

2. 測定環境と試料作成

FTIR は装置の特性上、氷点下では使用できない。そのため、試料融解と着霜を防止する必要がある。試料融解は、試料自体の温度を-15^{\circ} に引き下げ、試料室に入れる直前までクーラーボックスに入れておくことで試料の温度上昇を防いだ。

実験環境の概要図を図1に示す。着霜については,装置全体をビニールで覆って実験環境をつくり,約-20 $^{\circ}$ $^{\circ}$ 0の不凍液をその中のコイルホースに循環させることで空間を除湿し,実験環境の露点温度を-1 $^{\circ}$ $^{\circ}$ 0以下(-5 $^{\circ}$ 0を目標)にして防いだ。また,ポリプロピレン製の試料ホルダーを製作し,計測中の融解を防いだ。

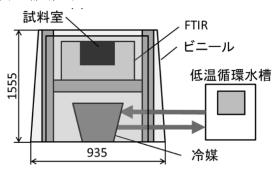


図1 実験装置概略図

単結晶氷の塊を用意し、結晶方位を偏光観察と エッチピット法で確認した後、-15 $^{\circ}$ Cのフリーザ 一内で所定の厚さに削る. 雰囲気温度約 20℃,露点温度-5℃の環境下に置いた FTIR に試料をセットし,赤外光の透過率を測定した. 試料厚さは 10, 8, 6, 4, 2mm 0 5 種類とした.

3. 実験結果

不凍液循環による除湿, 低熱伝導率ホルダー等 の工夫により, 20℃雰囲気中で単結晶氷の赤外吸 収スペクトルの測定結果を得ることができた.

赤外吸収スペクトル測定の結果,6mm 以下で明瞭に赤外吸収帯が現れ(図 2),試料が薄くなるにつれ Lambert の法則により反応する波数帯が増加し(図 3),厚さ2mmでは5400,4400,3900,2300cm⁻¹付近の吸光度が低下することが確認された.既往研究と比較し,近赤外域については概ね妥当と思われる結果が得られたが,赤外域では結果の妥当性について検証が必要である.

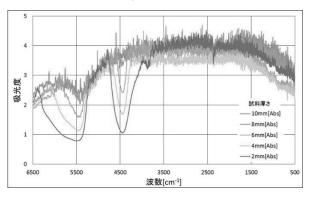


図2 試料厚さでの吸光度の比較

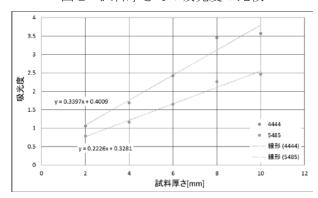


図3 試料厚さと吸光度の関係

氷のエッチピットを用いた結晶方位の測定 — a 軸方位の算出 — 高田守昌〇、東信彦 (長岡技術科学大学)

1. はじめに

氷は六方晶の結晶構造であり、力学的性質として異方性を有し氷の変形に強く影響するので、結晶組織の解析が行われる。氷の結晶方位の測定は、光学的性質を利用したリグズビーステージ (Langway, 1958)やファブリックアナライザー(Wang et al, 1999)、X線回折によるラウエ法 (Miyamoto et al, 2011)、電子線の後方散乱回折法 (Weikusat et al, 2011)により行われている。しかし、簡便な方法で、 H_2O 分子の並びを表現するために必要な c 軸と a 軸方位が測定可能な方法は存在していない。

Higuchi(1958)は、氷表面にホルムバール溶液を塗布し、熱腐食孔(エッチピット)が現われることを発見した。また、この形状が六角柱の切断部位の形状となることから、結晶方位測定を示唆した。笠原(2002)、重国(2008)は、エッチピットの幾何学的特徴を利用し、この輪郭形状と基底面判別から c 軸方位を決定が可能となった。高田ら(2012)は、この方法を発展させるため、六角柱の切断部位となるエッチピットを形成する頂点座標を求め、c 軸方位を測定する方法を考案した。本研究では、c 軸方位に加え、a 軸方位の算出方法について検討した結果について報告する。

2. 結晶方位の算出方法

例として、輪郭形状が三角形となるエッチピットと方位の関係を図 1 に示す。 $P_1 \sim P_3$ はエッチピットの輪郭形状の頂点で深さ 0 に存在する。 P_1 、 P_2 、 P_4 は六角柱の基底面上に存在する頂点である。c 軸方位は P_3P_4 の方向となる。輪郭形状となる $P_1 \sim P_3$ 点は測定で得られるので、これらの点から P_4 点の 3 次元座標を求める。この算出は非線形の連立方程式の解を求めることとなるので、数値計算を利用する。また、得られる解が複数存在するため、エッチピットの形状として存在可能な座標であるかを判定し P_4 点を決定する。次に a 軸方位の測定のため、六角柱の基底面の中心座標となる H_0 点を決定する。 H_0 点も P_4 と同様に幾何学的な特徴を利用し算出する。そして、a 軸角の基準となるベクトルを a 軸方位から求め、a 軸角を算出する。これらの算出方法で、a 軸方位を得ることが可能となった。

3. 算出により得られた結晶方位の評価

既知方位の仮想的なエッチピットを作成し、この輪郭形状の頂点座標および基底面の情報を上述の算出方法に入力として与え、c 軸と a 軸の方位を計算し算出方法について評価した。既知方位として、c 軸は天頂角を全範囲となる 0° ~90° を 0.5° 刻みで変化させた。また、a 軸は 60° 回転させると 0° と同じとなるため 0° ~60° の範囲で 0.5° 刻みで変化させた。天頂角 0° および 90° という特異な角度を除き、算出した全ての結果において c 軸および a 軸の角度は、計算の入力に用いた既知方位と一致した。従って、エッチピットの輪郭形状と基底面判別から、この算出方法により c 軸だけでなく理論的に a 軸の方位も測定が可能であることが明らかとなった。

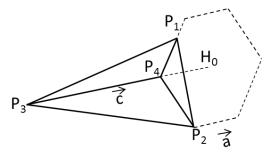


図1 エッチピットの形状と結晶方位

輪郭形状が三角形の例。 $P_1 \sim P_4$ がエッチピットの頂点である。エッチピットが六角柱の一部であるという特徴を利用しc 軸と a 軸方位を算出する。

カワウ追払いに特化した氷弾発射装置の開発と実証試験

上村靖司(長岡技科大)·西間木悠輔·〇中村友洋(長岡技科大·院)

1. はじめに

山梨県河口湖において、魚食性大型鳥類であるカワウの個体数が急増し、水産資源(ワカサギ)の捕食被害が深刻化している。「ねぐら」を駆除しようにも陸路でのアクセスが困難で、かつ漁業・遊漁水域では法規制により銃器が使用できない。そこで、本研究室で開発に取り組んできた氷柱を弾丸とするエアソフトガン(氷銃)を適用し、電源確保のできない孤島におけるカワウ駆除に取り組んだ結果を報告する。

2. 設置環境と機器レイアウト

使用期間はカワウが飛来する 10 月 \sim 2 月とし、使用時間はカワウが巣に戻る時間帯 $(16\sim20$ 時)とした。 $1981\sim2010$ 年の気象記録から最高・最低気温は表 1 のとおりである。

表 1 カワウ追払用氷銃(4号機)仕様

防水防塵性	IP67 (JIS C 0920:200) 相当		
使用期間・時間	10月~2月の16時~20時		
環境気温 −6.2℃~8.2℃			
設置場所・高さ	河口湖鵜ノ島・地上約 12m		
電源確保	自立 (太陽光発電+蓄電池)		
発射条件	時間制御(10 分間隔)		

図1は4号機の設置レイアウト図である.機械の特性上仰角は大きくできず、法規制上射程も短いので、巣に隣接する高木の地上から12mの位置に氷銃本体を設置した。電源の無い島なので、電源は太陽光パネルと蓄電池によって自立電源とした。夕方帰巣した頃、氷弾発射によって追払い、戻ったらまた追い払うという動作を想定して、10分間隔での発射とした。

注水、製氷、加圧、発射のサイクルを制御回路 (Arduino)によって完全に自動化した。加圧用エアコンプレッサを除く全ての電子回路・機器(リレー、注水ポンプ、制御器)は防水防塵ケース(図 2) に納めた。低温環境下で製氷するため原料水を入れる水槽が自然に凍結する恐れがあったことから、水槽底にペルチェ素子放熱部を組み込み、放熱と凍結抑制を兼ねさせた。

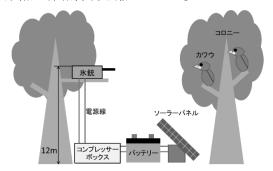


図1 4号機設置レイアウト

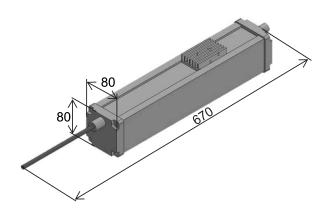


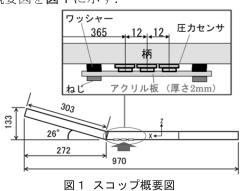
図2 カワウ追払用氷銃(4号機)本体外観

3. 実験結果

実験室において、本体を傾度 0° に設置し連続 稼働させた結果、4 時間にわたり正常に全回路が 作動し、氷弾発射が確認できた。

実地試験において、河口湖鵜ノ島の屋外高所に 設置して17時間放置した後に、気温7.5℃の環境 で、注水から発射までの一連の動作が正常に作動 した. 太陽光発電による自立電源を使用して、安 定的に動作しており、無電源地にも適用できる。

動作が不安定になる問題も顕在化し、注水ポンプ周りの機器配置に問題があることがわかっている。この問題も含め、実用化に向けてより安定性・信頼性を高めていく予定である。


圧力センサ装着スコップによる除雪作業量計測の試み

上村靖司(長岡技科大)・○村井優(長岡技科大・院)・赤川祐太(長岡技科大・工)

1. **はじめに** 高齢化・過疎化が進む豪雪地帯では、除雪の担い手不足が深刻化している. 各地で除雪ボランティアの活用も進めているが、特に地域住民にとって雪かきは「大変」「疲れる」など悪いイメージが定着している.

著者らは急速に発展しつつある IoT (Internet of Things) 技術に注目し、スコップに圧力・加速度センサや制御・通信機器を取り付け、除雪量、消費カロリー、スキルレベル等をスマートフォンで表示するシステムの構築に取り組み始めた.これにより、雪かきを「楽しい」「充実感」といった好ましいイメージに転換することを期待している.本報告では、その第1段階として圧力センサによる除雪作業量の計測を行った結果を報告する.

2. 実験装置 雪かきの動作は、①雪を切る、② スコップに載せる、③投げる、の3段階に分けられる.②③では、柄の持ち手部分に力が加わる. 柄の持ち手部に圧力センサを組み込むことで、除雪量を判定することにした.実験に使ったスコップの概要図を図1に示す.

持ち手部分に,導電粒子を練り込んだゴム製の圧力センサを3つ組み込み,ワッシャとアクリル板を重ねてネジ止めした.

3. 実験とアルゴリズム作成 所定の重さの模擬 雪(水を入れたペットボトル)を床に置き,スコップですくい,約2m前方に投げる,という一連の動作を行い,その際の圧力センサの指示値の時間変動を測定した.模擬雪は0.75~4.75kgまでを0.5kg刻みとした.実験結果の一例を図2に示す.すくい上げた時(②),および投げた時(③)に

ピークが見られる.②は概ね一定の値を示すが、 ③については投げる際の力の加減で大きくピー ク値が変動する.

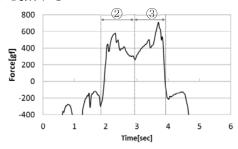


図2 実験結果の一例

除雪作業量としては、投げた量だけでなく、投げた距離、すなわち雪に与えた運動量を求めなくてはならない。そのため、投げる動作における力積を運動量の指標として求めることとした。また除雪動作以外での圧力値をカウントしないように、所定のしきい値以下は、除雪動作外として計測値から除いた。力積の計算時間は試行錯誤により求めた。以上の知見を踏まえて、運動量を除雪量(0.5~5 kg まで 0.5 kg 刻み)に換算して判定するアルゴリズムを作成した。

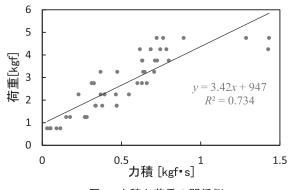


図3 力積と荷重の関係例

4. 実証実験 平成28年2月20日に,長野市鬼無里地区で開催された「雪かき道場®」において, お披露目と実証試験を行った. 実証試験で体験した参加者からは,「除雪量が可視化されることで達成感が高まる」,「消費カロリーが表示されるのが非常に良い」などの感想が聞かれた.

なお本研究は、平成 27 年度内田エネルギー科 学振興財団の助成を受けて遂行されたことを記 し、謝意を表する。

立山室堂平における積雪断面観測 ---2014 年 11 月と 2015 年 4 月の比較による一部融解の影響---

浅地泉(北海道大環境科学院), 〇島田亙(富山大院・理工), 朴木英治(富山市科学博物館), 青木一真(富山大院・理工)

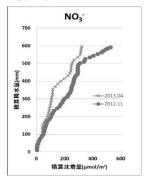
1.はじめに

立山室堂平に形成される積雪は、雪が積もり始める10月下旬から融雪が起こる翌年4月まで、ほとんど融けることなく堆積する.そのため、積雪層内部には降雪粒子に含まれる様々な化学成分や大気エアロゾル粒子が保持されていると考えられている.本研究では、2014年11月と2015年4月に積雪断面観測を行い、雪試料に含まれる化学成分の比較を行った.

2. 観測手法

観測場所は立山室堂平(標高 2450m, 36.58° N, 137.60° E) で,2014 年 11 月 19 日と 2015 年 4 月 16 日~18 日に積雪断面観測を行った.雪温と硬度を 5 cm 間隔で測定し,化学主成分分析用に高さ 3 cm ごとに雪試料を採取し,試料ごとの密度も測定した.試料の分析には,富山市科学博物館のイオンクロマトグラフを用い,同時に pH と電気伝導度も計測した.

3. 結果


2014年11月の観測では積雪高は1 m 12 cm で、積雪水量は243 mm であり、2015年4月の積雪高は6 m 36 cm で積雪水量は2973 mm であった.4月積雪について、雪質は、積雪高3 m 付近まではすべてざらめ雪が占めており、その上に氷板層とともにしまり雪の層が堆積していた。全層平均雪温は-0.45 $^{\circ}$ $^{\circ}$ と例年より高かった.

また,2014年11月から2015年4月にかけての積雪層は,一部融解を起こしていることが他の観測から予想された.

4. 考察

積雪融解が起こった際に積雪層内の化学成分 はどのように移動するのか,また積雪層のどの部 分で化学成分の流下が起きたのかを調べた.

まず,圧密を考慮した補正を行うため,11月の 積雪水量に対応する4月の積雪高を求め,イオン 成分の沈着量の合計値を比較した. その結果, 多くのイオン成分において 4 月の積雪内の沈着量が減少していることが分かった (Fig. 2). 同様の沈着量の減少は, 積雪融解の見られなかった 2012年11月と 2013年4月の積雪との比較においても見られる (Fig.1). また, イオン成分の種類によって積雪層内での保存率が異なり, なかでも NO3-は積雪層内に残りにくいことが分かった.

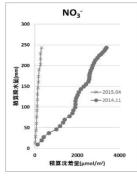


Fig.1 2012年11月と2013年4月の比較(左) Fig.2 2014年11月と2015年4月の比較(右)

一般的には、積雪層内の化学成分は積雪融解があった場合は保存されず、堆積時期の推定を行うことが難しいとされている。しかし、本研究ではNO3を用いることで、融解が起きたとされる積雪層のどの部分でイオン成分の流下が起きているのかを判定することができると推測した。Fig.3は、縦軸を積算降水量に置き換えた積雪層位図と、横軸にイオン成分の沈着量の合計値をとったグラフである。このグラフの傾きから、融解部分の判別を行った。

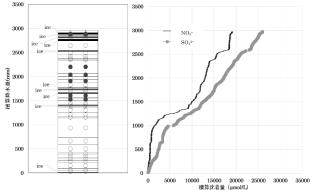


Fig.3 積算降水量に対する NO₃と SO₄2の積算沈着

立山・室堂平における積雪層中のイオン成分およびアルデヒド類濃度

渡辺幸一・平井泰貴・高辻航平・山崎暢浩・矢地千奈津・江尻遼介・金聖鈞・宋笑晶(富山県立大) 島田亙・青木一真・川田邦夫(富山大)

はじめに

立山・室堂平(36.6°N, 137.6°E, 標高 2450 m)では、毎年 11 月頃から積雪が始まり、4 月には 5 m を超える積雪層が形成される。こうして形成された膨大な量の積雪は、晩秋期から春期までの約半年間のさまざまな環境情報を記録している。そのため、室堂平での積雪試料の化学分析は、観測が困難な期間の大気環境を考察する上で極めて重要となる。室堂平における積雪中の化学成分の測定は、1990 年代に行われ、成分の動態や保存状態などについての多くの貴重な知見が得られている(長田ら, 2000)。2000 年以降にも室堂平において積雪化学観測が行われ、主要イオン成分以外に過酸化物やアルデヒド類の測定も行われてきた(Watanabe et al., 2011, 2012)。しかしながら、山岳域の自然環境評価のためには長期間に渡る測定の継続が必要である。本研究では、4 月の立山・室堂平でこれまでに実施した積雪断面観測の結果をもとに、積雪中のイオン成分と共にホルムアルデヒドおよびアセトアルデヒドの動態について報告する。

方法

4 月の立山・室堂平において、積雪層の断面観測・分析試料の採取を行い、積雪試料を融解させないまま富山県立大学に持ち帰り、冷凍保存した。アルデヒド類濃度の測定は、試料採取後数日以内に (融解後直ちに) HPLC・ポストカラム法 (岩間ら, 2011) により、ホルムアルデヒド (HCHO) およびアセトアルデヒド (CH3CHO) 濃度を測定した。主要イオン成分濃度についてはイオンクロマトグラフ法によって測定を行なった。

結果と考察

図 1 に、2015 年 4 月の立山・室堂平における積雪層中のイオン成分およびアルデヒド類濃度の鉛直プロファイルを示す。2015 年の積雪層についてはざらめ雪が卓越し、雪温は全層でほぼ 0° であった。そのため化学成分の溶出や再分配の影響が大きかったものと考えられる。積雪中の $nssSO_4^{2-}$, NO_3 -および NH_4 -は主に人為起源汚染物質によるものであり、同様の深度分布を示していた。HCHO および CH_3 CHO は $nssSO_4$ -などと類似した濃度分布を示しており、同様の結果は 2010 年および 2011 年ピットにおいても観測され (岩間ら, 2011; Watanabe et al., 2012)、酸性物質だけなく、アルデヒド類のような光化学生成物(あるいは前駆物質)も、アジア大陸から立山へ長距離輸送されてきている可能性が考えられる。濃度の鉛直プロファイルから、積雪中の HCHO は CH_3 CHO よりも堆積後の拡散の影響が受けやすいと考えられる。

積雪層内の人為起源汚染物質の平均濃度(あるいは沈着量)には年度による濃度の相違や変動がみられ、中国の二酸化硫黄排出量の変化だけでなく、アジア大陸からの大気汚染物質の輸送過程の影響を受けているものと考えられる。特に、寒候期の日本において強い冬型の気圧配置が卓越する年には積雪中の人為起源物質の濃度が低く、移動性高気圧型が卓越する年に濃度が高くなる傾向がみられた。大気大循環の変動が立山への大気汚染物質の輸送に大きな影響を与えていると考えられる。

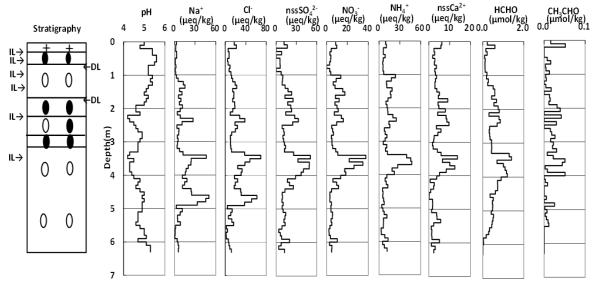
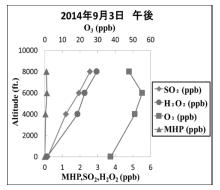


図1 立山・室堂平(2015年4月)における積雪層中のイオン成分、ホルムアルデヒドおよびアセトアルデヒド

回転翼航空機を利用した富山県上空の過酸化物濃度の測定(皿)

渡辺幸一・宋笑晶・角山沙織・矢地千奈津・金聖鈞・深井謙佑・西部美雪(富山県立大学)

はじめに


大気中の過酸化物 (過酸化水素(H_2O_2)、有機過酸化物(ROOH)) は、主にオゾン(O_3)介した光化学反応によって生成される。また、二酸化硫黄(SO_2)の液相酸化を促進させることや、気候システムに大きな影響をあたえている ($PM_{2.5}$ の主成分でもある) 硫酸塩粒子の生成に大きく寄与していることから、過酸化物は大気中で非常に重要な役割を果たしている。近年、国内のバックグラウンド大気中の O_3 濃度が大きく変化していることが報告されており、 H_2O_2 の生成に影響を与えているものと考えられる。そのため、 H_2O_2 の測定データの蓄積が重要となる。特に上空大気中の過酸化物濃度の測定は、雲粒内での硫酸の生成過程や降雨・降雪の酸性化を考察するために重要であるが、国内での鉛直プロファイルのデータは非常に少ない。本研究では、ヘリコプターを利用して、富山県射水市上空の H_2O_2 、 SO_2 、 O_3 などの測定を行った結果について報告する。

方法

2010 年から 2014 年の夏期(通常 8 月、2014 年については 9 月初旬)および 2014 年から 2016 年の 3 月に、ヘリコプターを利用して富山県射水市上空の大気観測を行った。また、比較のため 2015 年 10 月にも観測を実施した。高度 2000 ft (600 m) 毎および 4000 ft (1200 m)毎に 10 分間旋回水平飛行し、ミストチャンバーを用いて大気中の過酸化物を採取した。試料採取終了後、直ちに富山県立大学内へ下降し、過酸化物を採取した捕集液を超低空で構内に投下・運搬し、速やかに HPLC・ポストカラム・酵素式蛍光法により分析を行った。学内へサンプルを輸送後、ヘリコプターは直ちに次の高度へ上昇し、試料採取を行った。この方法により、試料採取後 10 分以内に分析することができ、精度の良い過酸化物の測定を行うことが可能となった。また、 O_3 、 SO_2 については、自動計測を行った。

結果と考察

図1に、2014年9月3日および2015年3月27日における富山県射水市上空の過酸化物、 O_3 、 SO_2 濃度の鉛直プロファイルを示す。2014年9月については、 SO_2 は地表付近よりも上空で濃度が高かった。 H_2O_2 も上空で高濃度であり、 SO_2 濃度よりも高かった。上空では十分な酸化能力があると考えられる。一方、2015年3月の観測時は、 SO_2 濃度に対して H_2O_2 濃度が低い状態(Oxidant limitation)であった。このとき、雲が発生しても雲粒内での SO_2 の酸化が抑制されるものと考えられる。これまで3月に実施した観測では、いずれも H_2O_2 濃度は夏期と比べて非常に低く、寒候期ではアジア大陸から高濃度の SO_2 が輸送されてもきても酸化剤が不足するため、雲水や降雪の酸性化が抑えられている可能性が考えられる。酸化剤となる過酸化物濃度の増加が冬期の降雪の酸性化を促進させるものと考えられる。

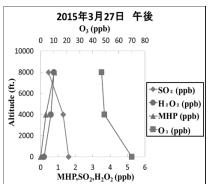


図 1 2014 年 9 月 3 日および 2015 年 3 月 27 日の富山県射水市上空における H₂O₂、CH₃OOH (MHP)、O₃、SO₂ の鉛直プロファイル

日本の積雪観測・断面観測測定結果長期データベースの作成

○ 山口悟 ¹⁾, 小杉健二 ¹⁾, 的場澄人 ²⁾, 青木輝夫 ³⁾, 竹内由香里 ⁴⁾, 庭野匡思 ⁵⁾
 ¹⁾防災科研・雪氷, ²⁾北大低温研, ³⁾岡山大, ⁴⁾森林総研, ⁵⁾気象研

1. はじめに

日本は南北に長いために、温暖化に対する積雪 の物性値の変動は地域によってさまざまである. そのような積雪の物性値の長期変動を理解する 際に重要なる情報の一つは、各所で継続的に行わ れている積雪観測や断面観測結果である. それら の観測データの一部に関しては、すでに報告書な どにまとめられて公開されているものもあるが、 その形式は紙媒体や仮にデジタルデータだとし ても pdf のような形をとっており、他の研究者が 必ずしも使いやすい形とは限らない. 今後蓄積さ れたそれらの貴重なデータを有効に活用するた めには、統一フォーマットでデジタル化すること が不可欠である. このような現状をうけ, いくつ かの研究機関が取得した積雪観測や断面観測の データのデータベース化になけた準備が有志に よって進められている. 今回はその取り組みに関 して紹介する.

2. データベースの内容

今回データベース化の対象としているのは札幌,新庄,長岡,十日町の断面観測結果である.それらの観測点は,気候条件が異なる場所にありかつ過去継続的に観測が行われている.本データベースでは断面観測データに加え,各箇所で観測されている気象データに関しても,国際標準の統一フォーマットに準じた形でデジタル化する.

3. データの公開方法

データベースは、防災科学技術研究所が所内に 所有する公開型クラウドシステム内にデータベースアクセス用の web を作成し、その上で公開する。またミラーリンクとして、北海道大学低温科 学研究所付属環オホーツク観測研究センター内 にも同様のシステムを設置する。データの説明は 日本語、英語の双方の言語で表示し、データ内の 項目等の記述はすべて英語表記とする。データベ ース完成後に、その内容に関する国際論文を発表 し、その論文を引用することを条件に自由にデー タ利用が可能な状態でのデータ公開を目指す.

4. 期待されるデータベースの活用方法

構築されたデータベースの活用方法としては 以下のことが期待される.

- (1) 大気-積雪の相互作用を研究している研究者にとって、近年の温暖化の影響が積雪にどのように影響を与えているかという現象の理解に役立つだけでなく、数々のシミュレーションの検証並びにモデルの改良に貢献する.
- (2) 現在世界的に進められている積雪物理モデルの相互比較(SNOWMIP)において、従来の欧米の積雪条件以外でのモデルの相互比較が可能となるデータを提供することで、欧米とは異なった積雪状況下での積雪物理モデルの相互比較が可能となり、各積雪物理モデルの普遍性が向上することが期待される.
- (3) 積雪物性の経年変化は、雪氷災害の研究者が将来の雪氷災害を研究するときの有益な情報となりうる.

5. 今後の展望

現在は上記の4カ所のデータを対象としているが、他の観測地点の協力を得られれば、その地点のデータもデータベース化を進めていき、日本の雪氷コミュニティー全体で貴重なデータを共有できるような仕組みを作りたいと考えている. 興味のある方はぜひ参加していただきたい.

なお本研究費の一部は以下の科研費から助成を受けている. 科研費基盤 A: 次世代積雪物理量測定技術開発と精密積雪物理モデルに基づく雪氷圏変動監視手法の確立(代表 山口悟) 科研費研究成果公開促進費(データベース):日本の積雪観測・断面観測結果長期データベース(代表 山口悟)

斑点ぬれ雪の動画観察報告

○藤野 丈志((株)興和)・亀田 貴雄(北見工業大学)

1 はじめに

斑点ぬれ雪¹⁾は、濡れ雪に閉じ込められた気泡が白い斑点となって見えている、薄く積もった積雪である.これまでに斑点ぬれ雪の生成条件、斑点の大きさや空間分布、斑点の生成メカニズムについて報告されている²⁾. 斑点ぬれ雪の物理のさらなる解明を目的として、2015-2016 冬期から北見市、新潟市、金沢市、広島市に観測地を設け、動画撮影を主とした観察を開始した.本報告では、新潟市で観察された斑点ぬれ雪について、その生成の様子、斑点の動きを紹介する.

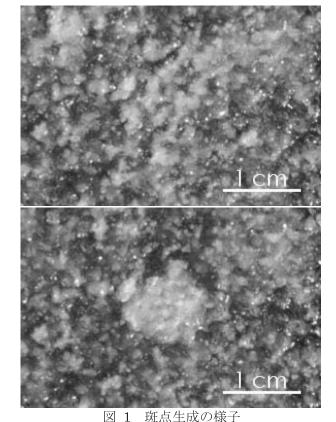
2 観察方法

新潟市の中央区と西区において、それぞれタイムラプスカメラ3台を使い、1分間隔のインターバル動画撮影をおこなう定点観察と、生成した斑点ぬれ雪を撮影する移動観察をおこなった。西区では、透明な塩化ビニル板を設置し、そこに積もった積雪を裏から観察するカメラも設置した。観察地点の気温は、サーミスタ温度計を使い10分間隔で記録した。

3 観察結果

表-1 に確認できた斑点ぬれ雪の回数を示す. 観測期間中,積雪がゼロとなった消雪回数は中央区で24回,西区で20回であった. そのうち斑点ぬれ雪となり消雪したことを確認したのは,中央区で9回,西区で5回であった. 図1に斑点が生成した瞬間をとらえた事例を示す. この例では,直径1mm前後の気泡が1分未満で集まり,直径1cmの斑点が生成した.

生成した斑点は、移動、合体、分裂し、様々な大きさや形に変化した。タイヤ跡や靴の踏み跡は斑点ぬれ雪となりやすく、道路圧雪では図 2 に示すような、大きな斑点が観察され、この斑点も移動・合体をおこなうことが確認された。


謝辞

本研究は、科研費(研究代表者:亀田貴雄)の 助成を受けて実施したものである.

- 亀田貴雄・原田康浩・高橋修平(2012): 道路上の濡れ雪の白い斑点模様(3), 雪氷研究大会講演要旨集, Vol. 2012
- 2) Kameda, T., Y. Harada, and S. Takahashi (2014): Characteristics of white spots in wet snow, Journal of Glaciology, 60(24), 1075-1083

表 1 2015-2016 冬期斑点ぬれ雪確認回数

	新潟市中央区	新潟市西区
積雪がゼロ となった回数	24 回	20 回
斑点ぬれ雪 確認回数	9 回	5 回

出 : 気泡を含むぬれ雪の状態 下:1分後, 気泡が集 まり直径1 cm の斑点となった

図 2 道路圧雪に生成した大きな斑点

南極・昭和基地でみられた粗大化した雪粒子

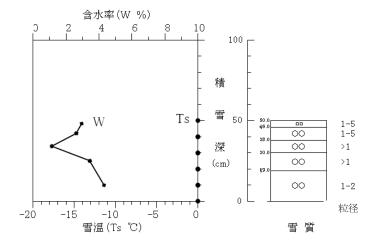
○竹内由香里(森林総研十日町試験地*) · 荒川逸人(国立極地研究所*)

*第57次日本南極地域観測隊

はじめに 南極の昭和基地(69°00′S、39°35′E)は、南極大陸氷床上ではなく、大陸氷縁から $4 \, \mathrm{km}$ 程離れた 東オングル島の露岩上に位置している. 積雪に覆われているが、風による雪の吹き溜まりや吹き払いが多く、 場所によって積雪深が大きく異なっている。 夏期($12\sim1$ 月)は日照時間が長く、気温がプラスになる時間 も長いため、融雪が生じ、夏の終わりまでに消雪したエリアが広がっていく。 2015-16 年夏期に昭和基地に おいて、一部の積雪で粒径が非常に大きな粒子が見られた(図 1). 大きいものでは粒径が $2 \, \mathrm{cm}$ を超え、積 雪粒子というよりは氷結晶のようであった。このような粒子が形成された過程を推測した.

断面観測 広くて平坦な場所において 2016 年 1 月 21 日に積雪の断面観測を行なった(図 2). 積雪深は 50 cm であったが、その下にスコップが刺さらないほど硬い凍結した層があったので、図 2 では凍結層上面の高さを積雪深 0 cm とした(凍結層の観測はしていない). 観測時の気温は 2.1°C,積雪は全層 0°C のざらめ雪であった.粒径は全ての層で 1 mm 以上で、5 mm 程度の大きな粒子が混在する層もあったが、通常見られるざらめ雪の粒径であり、図 1 の粗大化した粒子に直接結びつくような積雪ではなかった.

凍結層の観察 上述の積雪下の硬い凍結層は、2015 年冬期ではなく、2014 年以前に積もり、夏期に融け残って越年した雪であることに気づいた。凍結層の上部の積雪を取り除いて観察した結果、日射が直接当たって融解すると粒子がばらばらになることがわかった。その粒径は通常のざらめ雪より大きなものであった。 考察 粒子が粗大化したシナリオを以下のように推測した。昭和基地では夏期に積雪内を流下した融雪水が凍土のためにすぐには地中へ浸透しないため、下層の積雪は長期間、0℃の水に浸かった状態になると考えら


れる. 2014 年以前に積もり、夏を越しても消えずに残った下層の積雪は、夏期に水に浸かった状態が続いた後、再凍結して新たに積もった雪に埋まったと考えられる. この間に雪粒子が粗大化したと推測される(若浜、1965、対馬、1978). 翌年の夏になり上部の積雪が消えて、下層の古い凍結層が表面に現れて日射で融解する際に、氷の結晶粒界が先に融け、図1のような粗大化した粒子がばらばらになって現れたと考えられる.

文献

若浜五郎, 1965, 水を含んだ積雪の変態. 低温科学, A23, 51-70. 対馬勝年, 1978, 水に浸った雪の粗大化. 雪氷, 40(4), 1-11.

図1 大きな氷粒子.

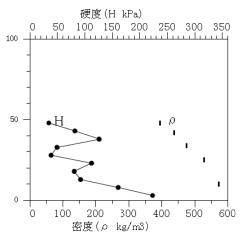


図2 断面観測の結果(2016/1/21)

立山室堂北斜面における植生と消雪の関係および融雪特性

○杉浦幸之助(富山大)・初見紗織(富山大)・和田直也(富山大学)

1. <u>はじめに</u>

立山室堂周辺は尾根や谷が多く分布しており、植生がモザイク状に分布している。先行研究では、植生調査が実施され、立山室堂の南方に位置する室堂山の北向き斜面では、地温を測定して植生と消雪の関係が考察された。そこで本研究では、室堂山の北向き斜面で融雪期から消雪まで実際に積雪観測を実施して、植生と消雪の関係を調べ、さらに観測地の融雪量も求めたので報告する。

2. 観測方法

本研究の対象観測斜面には,既存の50点の観測点が存在している(東西約200m, 南北約400mの範囲. 斜面下方から上方へ標高差約150m内に5測線.1つの測線は10m間隔の観測点を10点含む). 観測期間は,融雪期から対象観測斜面の雪渓が消雪するまでであり,観測回数は合計6回(2015年6月2日,6月24日,7月14日,7月31日,8月11日,8月27日)である. 小型GPSにより50点の観測点を確認し,測深棒で積雪深を測定した.また,神室式スノーサンプラーを用いて,代表する1地点で積雪水量を測定した.

3. 結果と考察

対象観測斜面の植生の優占種は、ハイマツ群落、イワイチョウ・ショウジョウスゲやチングルマといった 雪田群落、礫地に低密度で分布するヒロハノコメススキ群落の3つに大きくわけることができる。植生と消 雪の関係を見てみると(図1)、ハイマツ群落が一番早く消雪し、続いて雪田群落、そして礫地が最も遅く消 雪していた、礫の地点は土壌攪乱がおきていて、植生にとって好ましくない環境であったと考えられる。

また、本観測で求められた融雪量は観測点によって異なったが、先行研究の融雪係数を用いてデグリーデー法で算出した融雪量とを比較したところ、本研究の融雪量は先行研究と比べて少なかった。これは、観測地点が北斜面のために日射量が少ないことや、積雪に不純物が多く含まれると融雪が促進されるがその影響が小さかった可能性などが示唆される。

図 1 対象観測斜面. a:2015年6月2日, b:6月24日, c:7月14日, d:7月31日, e:8月11日, f:8月27日.

積雪期における雪面の熱収支解析

西村基志・佐々木明彦・鈴木啓助(信州大学)

1. はじめに

積雪からの融雪水は地表面に大量の水分を供給し、斜面崩壊などを引き起こす可能性が ある。また、積雪は地表面に届く日射を遮るために気温の上昇を緩和する。このように積 雪が自然環境へ与える影響は大きく、自然災害の危険を予知し、気象・気候へ与える影響 を予測するという点でも、積雪表面の融解量およびその融解過程を明らかにすることは重 要である.

雪面における表面融解量の推定には日平均気温を用いる degree-day 法が広く用いられ てきた(例えば, Laumann and Reeh, 1993). しかし, 融解量の時間変化や詳細な空間分布 を議論しようとする場合には degree-day 法ではその再現が困難である(松元ら, 2010).

そこで本研究では多要素の気象観測データを用いて雪面の表面融解量を求め, degree-day 法との差異を議論するとともに、年々変動の要因を検討する.

2. 方法

松本市に位置する乗鞍岳東斜面の標高 1590 m 地点で気象観測を行い, 観測地点での平坦 な雪面に対し、熱収支解析を行った、観測データは気温、短波放射、長波放射、湿度、降 水量, 気圧, 風速, 積雪深である. 各要素は 10 分間隔で測定・記録した. 熱収支解析には 熱収支法, 乱流輸送量の計算にはバルク法を用いた. 熱収支解析には以下の(1)式に示す 熱収支法を用いた.乱流輸送量に関しては式(2),(3)に示すバルク法を用いて計算を行 った. 熱輸送に関しては雪面に向かう方向を正の方向として定義する. データの解析は 2011年11月以降の積雪期間について行った.

$$Q_{M} = Q_{R} + Q_{H} + Q_{E}$$
 (1)
(O_{M} : 融解執 O_{R} : 放射収支 O_{M} : 顕執 O_{R} : 港教

 $(Q_M: 融解熱, Q_R: 放射収支, Q_H: 顕熱, Q_E: 潜熱)$

$$Q_{H} = k_{H} \rho C_{p} u (T - T_{0})$$

$$Q_{E} = k_{E} \rho l (0.622/p) u (e - e_{0})$$
(2)
(3)

 $(k_H, k_E: バルク係数, \rho; 空気密度, C_p: 定圧比熱, u: 風速, T, T_0: 気温, 地表温度,$ I: 蒸発熱,P: 大気圧,e, $e_0:$ 水蒸気圧,地表面の水蒸気圧)

3. 結果と考察

観測地点では特定の年を除いて毎年 150‐180 cm の最大積雪深が観測される. また, こ の観測地点における積雪期間の平均風速は 0.8 - 1.0 m/s 程度であり, 積雪期間の平均気温 は-4 ℃前後である. 熱収支解析の結果では, 放射収支に由来する熱量が融雪に最も大き く寄与しており、その割合は総融解熱量に対し 110 %程度であった。また、顕熱輸送量が 14%を占め,放射収支量に次いで大きかった.一方,潜熱輸送量は負の方向に大きく寄与し ていた、放射収支量の寄与の割合が大きくなったのは乱流輸送量が少なくなったためであ ると考えられ、風速が 0.8-1.0 m/s であることが乱流輸送量を小さくしている要因の一つ であると考えられる.また,積雪期間の平均気温が−4 ℃前後であることも顕熱輸送量を 緩和させた要因の一つであると考えられる.

2次元水分移動モデルによる野外散水実験の再現計算

○ 平島寛行(防災科研)、石井吉之(北大低温研)、山口悟(防災科研)

1. はじめに

寒冷な山岳域においては、積雪は水文過程に大きく影響を及ぼす。特に積雪中の水分移動過程は降雨や融雪水の河川への流出応答に影響する。積雪変質モデル SNOWPACK のような一次元のモデルでは、不均一に流れる水みち等を考慮することができないため、雪氷防災研究センターでは水みちを再現可能な2次元、3次元の水分移動モデルの構築を行なってきた (Hirashima et al, 2014)。一方、北海道大学低温科学研究所では、北海道北部の母子里において、積雪に散水し流出応答を調べる散水実験を4度にわたり行なっている。本研究では、水分移動モデルの自然積雪に対する適応性を検証するために、散水実験の再現計算を行い、水みちの形成や底面流出応答を再現することを試みた。

2. 実験及びモデル

散水実験は 2012 年および 2013 年の融雪期において 4 度にわたり行われた。散水前に断面観測を行い、いずれのケースにおいても初期状態は全層 0° であった。散水実験では直径 80cm の円形の範囲に 1 時間あたり 30mm 前後の降水量の水を 3° 5 時間にわたり供給した。散水した場所の下には 1×1 m²のライシメータが設置されており、そこで散水中及び散水終了後数時間の流出量が測定された。

水分移動モデルを用いた再現計算は2次元で行なった。幅は80cm、高さは実験時の積雪深で与え、断面観測で得られた積雪層構造、密度、粒径、含水率を初期条件に与えた。メッシュサイズは2cmとした。計算の際には、散水実験における水の散布量に基づいてモデルで与える水供給量の入力データを作成し、散水実験の再現計算を行なった。なお、モデルでは水みちを再現するために粒径にばらつきを与えているが、ばらつき方の違いにより層構造が同じでも水みちの形成箇所や流出率に違いが生じることがある。このばらつき方は乱数配列により配置される。本計算では、それぞれの再現計算の際に6種類の乱数配列で計算を行い、ばらつき方の違いによる影響も確認した。

3. 結果

散水実験の再現計算結果の例を図 1 に示す。 いずれの再現計算においても、乾き雪中では水みちを伝わって流下し、ぬれ雪中では均一な流れとなりそこで拡散して流下することが確認された。また、粒径コントラストのある層境界では滞水した箇所が見られた。散水中に水の浸透断面の目視確認は行われていないため、ライシメータで測定した流出量のデータを用いて検証した。底面流出量の時間変化の実測と計算の比較結果の例を図 2 に示す。6 種類の計算結果(r0~r5)はそれぞれ異なる乱数配列を用いているが、それによる流出量の違いも見られた。特に、r3のように流出量が非常に小さくなる例もみられた。これは水みちが側面から計算範囲外に流出したケースで、ライシメータの捕捉範囲から外れた事を意味する。図 2 のケースでは流出パターンはおおよそ再現されたが、他の実験ではうまく再現されない例も見られた。今後、再現性を向上させるために最適化を進める予定である。

参考文献

Hirashima et al. (2014) A multi-dimensional water transport model to reproduce preferential flow in the snowpack. Cold. Res. Sci. Tech. 108. 80-90.

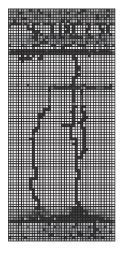


図 1 散水実験の再現計算の 例。色の濃淡は各メッシュの 含水率を表す。

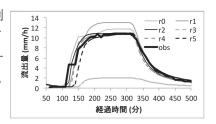


図2 散水実験の再現計算の例 (2012年の1回目)。色の濃淡は 各メッシュの含水率を表す。

富山県および岐阜県における積雪上の降雨現象

○杉浦幸之助(富山大)・宮川卓也(富山大)

1. はじめに

積雪上の降雨現象は、rain-on-snow (ROS) と呼ばれている.この ROS は、洪水や雪崩などの災害を引き起こすこと、氷板の形成をもたらすために牧畜に大きな被害を及ぼすことなどが報告されている.平井ら(2014) は新潟県を対象として、災害をもたらす可能性のある ROS の発生回数、発生時期、強い連続雨量を伴う ROS の原因および標高による発生頻度の違いについて報告している.

そこで本研究では、富山県および岐阜県を対象とし、気象庁のアメダスデータを用いて ROS の発生傾向、 災害をもたらす可能性のある ROS の発生回数や発生時期、標高との関係について調べたので報告する.

2. 解析方法

本研究では気象庁のアメダス観測によるデータを用いた。用いた要素は、降水量、積雪深、気温である。解析地点は、降水量、積雪深、気温を観測している富山県内の6地点(氷見、富山、伏木、泊、魚津、砺波)および岐阜県内の8地点(岐阜、関ヶ原、樽見、長滝、神岡、河合、白川、高山)である(図1)。解析期間は、各地点によって異なり、各要素がそろっている年の冬季(11月~4月)のみを対象とした。

ROS の抽出条件は、雨雪判別の境界気温を 0.0 ℃とし、積雪深 1cm以上、降水量 0.5mm以上を満たす場合とした。また、災害をもたらす可能性のある ROS(災害誘発 ROS)の抽出条件は先行研究(平井ら、2014)に従い、雨雪判別の境界気温は 1.5 ℃とし、1cm以上の積雪があり、連続雨量が 10.0mm以上とした。

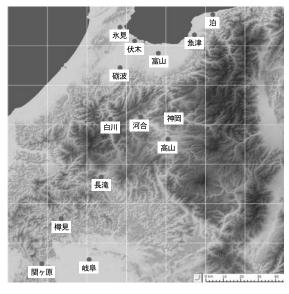


図1解析地点.

3. 結果と考察

富山県内の地点の年間の総 ROS 時間(年 ROS 時間)は,50 時間程度~400 時間程度と,大きなばらつきがあった。また富山県内の地点では,年 ROS 時間の経年変化にやや増加傾向が見られたものの,岐阜県内では増加減少の顕著な傾向は見られなかった。この経年変化は積雪日数および降水量の変化と対応していた。

災害誘発 ROS の年平均発生回数は、富山県内では最小の泊で年平均 2.0 回、最大の伏木で 3.5 回と大きな差は見られなかった。岐阜県内では最小の岐阜で 0.1 回、最大の白川で 7.3 回と大きな差が生じ、岐阜県内全地点の平均は 3.5 回であった。白川で多かった要因としては積雪日数が多く、ROS 時間が長かったことがあげられる。

災害誘発 ROS の発生時期を調べてみると、富山県内では全地点で1月に最も多く、月別の積雪日数も1月の割合が高かった。岐阜県内では富山県内の発生時期とは異なり、気温が上昇してくる3月に発生回数が多い地点が多かった。

さらに、災害誘発 ROS の発生回数と標高との関係を調べた. 富山県内および岐阜県内の標高 200m までの地点では災害誘発 ROS の発生回数は 0.1~3.5回とばらつきがあり、400m 以上の地点でも 1.3回~7.3回とばらつきがあった. 全体を見ても災害誘発 ROS と標高との関係は見られなかった. 新潟県では 30~300m の地点で災害誘発 ROS の回数が高いことが報告されていたが、富山県および岐阜県の地点ではその傾向は見られなかった. 今後は、対象範囲を中部山岳地域へと広げ、災害誘発 ROS の回数と標高の関係を調べる予定である.

積雪変質モデルを用いたリアルタイム積雪荷重計算

○ 平島寬行(防災科研)、伊豫部勉(京都大学)、河島克久(新潟大学)、上石勲(防災科研)

1. はじめに

雪氷災害による犠牲者のうち半数以上は屋根雪処理中の滑落等除雪中の事故によるものである。また、過疎地域では人手不足で雪下ろしが困難になり、空き家の倒壊も起きている。屋根雪対策の1つとして、屋根雪荷重の見積もりが有用である。屋根雪荷重は平地の積雪重量と大きく関係するので、積雪重量計の測定値の変化から雪降ろし後の積雪荷重を推定して雪下ろしの参考にすることは可能であるが、積雪重量計は高価であるためデータが得られる場所は限られている。一方、積雪深に関しては気象庁等の複数の機関で観測されており、その多くがwebで公開されている。しかしながら、積雪密度は時々刻々と変化するため、積雪深から直接重量を推測することは難しい。そこで本研究では、新潟大学が収集して公開している積雪深分布の情報を積雪変質モデルSNOWPACKの入力に用いることで、リアルタイムで積雪荷重を推定するシステムを開発した。

2. 研究方法

本研究では SNOWPACK から計算された積雪水量を積雪重量として扱い、屋根雪荷重を推定するための情報に用いた。 SNOWPACK の入力データは気象庁のアメダスデータおよび新潟大学の準リアルタイム積雪分布監視システムで収集している積雪深のデータを用いて作成し、各積雪深観測地点において積雪重量の計算を行った。データの流れを図1に示す。各地点における計算結果をまとめて積雪重量の分布図を作成するとともに、地点及び雪下ろしを行なった日付を入力することで推定される積雪荷重を表示するスクリプトを構築し、図2に示すサイトにて公開した。また、積雪重量計及び積雪調査で得られた実測値を用いた比較検証も行った。なお、積雪調査は積雪深観測点のうちの10地点にて行なった。

3. 結果

図2に示した積雪荷重計算のサイトは雪氷防災研究センターのホームページからリリースするとともに、雪氷学会メーリングリストにて通知した。公開した際には、新潟県防災局より市町村にサイトが紹介され、また防災ポータルで紹介していただいた。

また、本システムで計算した結果を積雪重量計のデータと比較したところ、積雪重量の推移は良く再現できていることが確認された。また、入力データに問題がない場合は積雪重量の誤差は10%前後であった。一方、積雪調査で測定した積雪重量をモデルの結果と比較したところ、10地点中5地点は20%以内の誤差に収まったが、残りの5地点では20%以上の差があった。誤差の大きかった5地点はいずれも自動観測地点と積雪調査地点の積雪深に差があったことが原因であることが確認され、積雪深が不均一な場所では注意が必要であることが示された。今後は、本情報から危険度情報につなぐことで自治体等ユーザにわかりやすい情報の作成を試みる予定である。

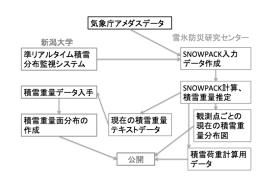


図1 積雪荷重計算までの流れ

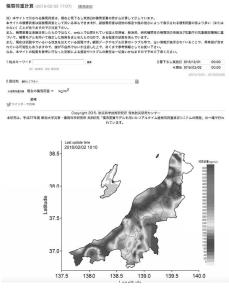


図 2 積雪荷重計算の公開サイト (http://yukibousai.bosai.go.jp/sk/sp/sn owpack/vanevuki/)

謝辞

本研究は、新潟大学災害・復興科学研究所共同研究費(2014#17, 2015#11)の助成によって行われた。

気温を考慮した等価積雪密度の推定について

〇松下拓樹·池田慎二·石川 茂·石田孝司(土木研究所)·和泉 薫(新潟大学)

1. はじめに

積雪密度は、雪崩対策施設の設計や積雪寒冷地域における建築物の 雪荷重算出に欠かせない要素である。雪崩対策施設の設計では、積雪密 度は一律の値が用いられる場合が多い。一方、日本建築学会(2015)では、 雪荷重の算出に単位面積あたりの積雪質量を積雪深で除した等価単位積 雪重量(kN/m³)が用いられ、年最大積雪深との経験的な関係式により求 められる。しかし、積雪密度は、その地域の気温や降水量等の条件によっ て変化する。このような地域特性を考慮した積雪密度を見積もることができ れば、より対象地域に即した雪崩対策施設や建築物等の設計が可能にな ると考えられる。本研究では、積雪断面観測の結果に基づいて、気温を考 慮した等価積雪密度の推定について検討を行った。

2. 方法

多様な気温条件下における積雪特性に関するデータを取得するため、図1に示す6地域9地点において、1ヶ月に1回の頻度で全層の積雪断面観測を行い、気温の自動観測(能生の4地点は、気象庁 AMeDaS と糸魚川市管理の3地点の観測施設による)を行った。月1回の積雪断面観測で得られた最大積雪質量 (kg/m^2) を最大積雪深(m)で除して、ここではこれを等価積雪密度 (kg/m^3) とした。最大積雪深と最大積雪質量が同じ観測回で得られたのは、駒ヶ根、蓼科、志賀、乗鞍、能生(60m,100m,200m)の7地点で、栂池と能生(500m)は最大積雪深が観測された翌月以降で最大積雪質量となった。また、気温を考慮した等価積雪密度の推定式として、等価積雪密度 $\bar{\rho}(kg/m^3)$ を目的変数、積雪深d(m)の平方根と $1\sim 2$ 月の平均気温 $\bar{T}(\mathbb{C})$ を説明変数とする重回帰分析を行った。

3. 結果

9地点のひと冬の観測値に対する重回帰分析の結果、気温を 考慮した等価積雪密度pの推定式として式(1)を得た。

$$\bar{\rho} = 51.46\sqrt{d} + 11.55\overline{T} + 325.9$$
 (1)

図2は、等価積雪密度の観測値と式(1)から求めた計算値の 比較である。二乗平均平方根誤差(RMSE)は 21.1 kg/m³、相 関係数は 0.919 である。図3に、等価積雪密度と最大積雪深の 観測値の関係に、式(1)による1~2月の平均気温別の計算値を 示した。式(1)より、積雪深が大きくなるほど、また気温が高いほ ど等価積雪密度が大きくなる傾向が表現されている。また、図3よ り、式(1)は既往の関係式と変化傾向がおおむね一致しており、 日本建築学会(2015)の関係式は式(1)の関係でみるとおおよそ

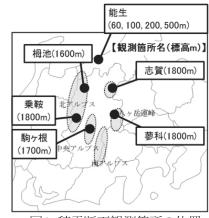


図1 積雪断面観測箇所の位置

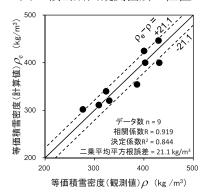


図2 等価積雪密度の観測値と 式(1)による計算値の比較

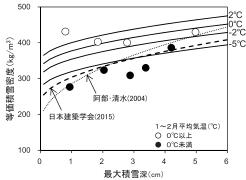


図3 等価積雪密度と最大積雪深、1~2月 平均気温との関係。図中のプロットは観測 値、実線は式(1)から求めた計算値。

気温-5~-3℃の状態に対応している。このように、積雪の地域特性として気温を考慮した等価積雪密度を求める場合は、上記の考え方で関係式を求めることができると考えられる。しかし、気温が高い場合、式(1)の関係は日本建築学会(2015)より大きな等価積雪密度となる。この点について、今後も観測データを増やして検討する必要がある。参考文献

阿部修,清水増治郎,2004: 多雪地における雪荷重算定のための等価積雪密度について,雪氷,66,11-19. 日本建築学会,2015: 等価単位積雪重量,建築物荷重指針・同解説(2015),日本建築学会,222-227.

上高地・槍・穂高地域における気温の鉛直構造

○黒雲勇希・佐々木明彦・鈴木啓助(信州大学)

はじめに

大気現象は気温,日射量,湿度などの様々な要素から成り立っており,これらは空間的に多様な変動を示し、山岳地域では標高の高さや複雑な地形のために局地的な大気現象が生じやすい。また、気象要素はフィールドにおける諸現象の制御要因であり、様々な研究分野にとって重要な情報となる。したがって、山岳地域の気象を理解することは、様々な研究分野への応用や資源管理、防災などの観点から重要である。しかしながら、山岳地域ではアクセスの困難さや観測機器の設置の難しさのため、観測は未だ十分に行われていない。本研究では、山岳地域における気温の鉛直構造や気象の特性を明らかにし、他の気象要素と関連付け、その特徴を捉えることを目的とする。

方法

本研究の対象地域は北アルプス南部の上高地・槍・穂高地域である。信州大学上高地ステーション(標高 1530 m,以下上高地 St.)および槍ヶ岳山荘(標高 3070 m)には気象測器を、岳沢(1600-2300 m),槍沢(1600-2300 m)では標高 100 m ごとに気温ロガーを設置し、観測を実施した。

各気象要素と総観場の関係を明らかにするため、毎日午前9時(JST)の地上天気図を6種の気圧配置型(吉野・甲斐,1975)に分類した。また、上高地St.の日射量と降水量のデータより日々の天気を晴、曇、降水日に分類し、気温逓減率と天気の間にどのような関係が見られるか解析を行った。

結果および考察

気温逆転の発生日数は晴天率の高い夏季に多く、曇天日や降水日の割合が増す冬季には減少した.一方、日最大逆転温度は日没から日出までの時間が長い冬季に大きくなり、夜間が短くなる夏季には小さくなる傾向を示し(図1)、冷気湖の継続時間も冬季に増加した.対象地域が移動性高気圧に覆われた日には、強い逆転の出現数が顕著に大きくなった.一方、出現時期が夏季に限られる南高北低型の日は、あまり強い逆転は見られなかった.月平均気温逓減率は冬季・春季に大きく、夏季・秋季に小さくなる傾向を示した.輪島における自由大気の気温逓減率との比較からは、地表付近における気温逓減率の変動の激しさを示す結果が得られた(表1).また、気温逓減率は月平均相対湿度および月平均比湿と負の相関を示し、天気別では日中の相対湿度が低下する晴天日に、気圧配置別では対象地域が移動性高気圧に覆われた日に気温逓減率が大きくなる傾向が見られたが、これらは空気が乾燥するほど気温逓減率が乾燥断熱減率に近づき、大きな値を取るためであると考えられる.なお、秋季には晴天日でも小さな気温逓減率の出現が多発したが、これは移動性高気圧に伴う沈降性逆転層の影響と考えられる.

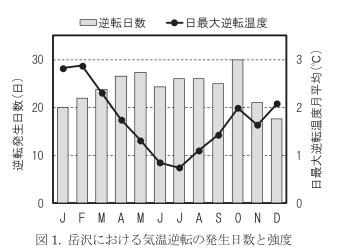


表 1. 輪島と岳沢、槍沢の月別の平均気温逓減率

	輪島(自由大気) (℃/100 m)	岳沢 (℃/100 m)	槍沢 (℃/100 m)
1月	0. 52	0. 61	0. 71
2月	0. 44	0. 65	0. 72
3月	0. 48	0. 57	0. 75
4月	0. 53	0. 65	0. 72
5月	0. 56	0. 74	0. 76
6月	0. 54	0. 64	0. 62
7月	0. 48	0. 57	0. 55
8月	0. 51	0. 50	0. 58
9月	0. 44	0. 43	0. 58
10月	0. 44	0. 42	0. 60
11月	0. 50	0. 58	0. 64
12月	0. 55	0. 60	0. 67

白山千蛇ヶ池雪渓の越年規模の経年変化

〇小川 弘司 (石川県立大学大学院)、伊藤 文雄 (元福井大教育地域科学部物理教室)

はじめに

発表者らは、白山にある多年生雪渓の千蛇ヶ池雪渓を対象に、その越年規模(面積)を 1981 年以降モニタリングするとともに、写真などからより過去の越年規模を、明らかにしてきた。

過去に 1981 年以降 2006 年までの越年規模の経年変化について発表したが(小川・伊藤, 2007)、今回、それ以降の越年規模を含めた経年変化について報告する。

多年性雪渓としての千蛇ヶ池雪渓

千蛇ヶ池雪渓は、白山の山稜西側の標高 2,570m付近に位置し、白山火山の噴火活動によって形成された爆裂火口のすり鉢状の地形にある。周辺は東から南側にかけて急斜面が連なり、冬季の北西季節風が吹き込みやすい。これら地形的な要因のため、雪が吹きだまり易く、白山にある唯一の多年性雪渓として存在していると考えられる。雪渓のタイプとしては、吹きだまり型に属する。

また、千蛇ヶ池の名は山上で悪さをする千匹の大蛇を高僧が封じ込め雪で蓋をしたという伝承に基づくものであり、池と名がついてもその湖面がすべて見える事はなかったとされる。古文書には、古くは「千歳谷」と呼ばれ、雪が消えることなく数千歳を経ることからこの名がついたと記されている。このようにかなり古くから多年性雪渓であったことが推察される。

調査方法

越年規模の測量は、雪渓が最小となりかつ降雪前にあたる 10 月上中旬に行った。2002 年の 10 月 13 日に雪渓及びその周辺部の測量を行い、ベースマップ(コンター間隔 1m、縮尺 1/500)を作成するとともに、雪渓域を測量した。また、GIS を使用してベースマップ上に 2001 年以前の雪渓規模の測量データを図化し、面積を求めた。この年以降引き続き毎年測量を行い、越年規模を測定している。なお、2002 年以降の測量はトータルステーションやレベルを使用し測量を行ったが、それ以前については簡易測量や現地観察による年もあり、その精度にはばらつきがある。

雪渓の越年規模(面積)の変動

今回の2007年以降に限れば、越年規模は増減を繰り返しているが、総じて増加傾向にあり、2015年の越年規模は3,000㎡を超え1981年以降では、4番目の規模となる大きさであった。

しかし、1981 年及び 1996 年には 4,000 ㎡ を越える大雪渓となって越年することがあったが、近年はその規模に達することはない。

1981 年以降 2015 年までは、漸減を示していることに変わりはなく、よく知られた地球規模の温暖化傾向に類似する(当日図参照)。

文 献

小川弘司,伊藤文雄,2007:白山千蛇ヶ池雪渓 の変動と気象との関係.2007年度日本雪氷学 会全国大会講演予稿集)

千蛇ヶ池雪渓 (2015年10月18日撮影)

天皇の巡幸記録からわかる明治初期の天然雪氷利用について(1)

- 明治11年の新潟県内における天然雪氷利用状況-

和泉 薫 (NPO 法人 なだれ防災技術フォーラム)

- 1. はじめに: 明治天皇は明治初期(1872~1885)に,期間が1ヶ月ないし2ヶ月以上にも及ぶ地方大巡幸を六度も行った.地方の旧藩主は御巡幸を平伏して迎え,それを見た民衆に江戸幕府にかわる天皇は,歴史的.民族的に支配の正当性を持ち,仁恵深い君徳を備えた至高の存在であることをアピールしたと言われている(田中彰,2015).この六大巡幸は,多くが6~9月の暑い時期に馬車や板輿によって行われたため,所々の御在所や小休所では馬口洗水飲水等の設けはもちろん,可能な所では天然雪氷を調達して天皇を接待したことが巡幸誌等に記録されている.本稿ではこうした記録から垣間見えた,明治初期の日本各地で行われていた天然雪氷利用のうち,1878(明治11)年の北陸・東海道巡幸時の新潟県内における実蹟を報告する.
- 2. 関山,高田行在所における雪の献上: 9月10日に長野県から新潟県入りし、関山(現妙高市)の行在所に宿泊した天皇は、妙高山の谷間の残雪を採取し販売していた松山善作から氷雪の献上を受けた.翌11日には高田(現上越市)の行在所で金谷山麓の雪室(雪穴)に囲い置いた雪の献上を受けた(明治11年北陸御巡幸史、1912-3). 上越地域では明治初期に既に雪室で貯蔵した雪を商売にしていたことがわかる.
- 3. 新潟行在所での雪氷の献上と付近にあった「氷室町」: 9月16日に新潟町(現新潟市)礎町の行在所ー白勢邸に到着した天皇はここに3泊し二王子岳の氷雪を献上された(明治11年北陸御巡幸史,1912-3).この氷雪は五頭山(出湯山)から取り寄せたとも言われているが、いずれにしろ9月に残雪を探して運んでくるのは大変だったに違いない.後年の聞き語り(新潟古老雑話,1933)によれば、天皇に随行した岩倉右大臣の宿泊先一荒川邸では、函館氷を前もって三菱から取次いでいた。このように天然雪氷を調達したのは、事前に新潟県庁から"氷(雪)は御休泊所毎に可成丈け澤山に用意のこと"という布達があったためである.

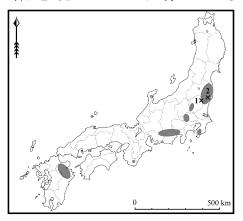
16日に行在所に到着するまでの新潟町内における天皇一行の通過経路(斎藤秀平/編,1937) に記載によれば、信濃川河畔にあった「氷室町」を通過したことが記載されている。この頃の夏場には、信濃川上流の三条、与板、長岡などから新潟へ川船によって雪が運び込まれており、その雪を一時貯蔵していた倉庫(氷室)があったことから付けられた町名に違いない。ただこの年9月までには氷室の雪も底をついたのであろう。

- 4. 荒川小休所における雪氷冷熱の献上: 9月20日に新発田での御在所白勢本邸を出発し新津へ向かった天皇一行は,道中,荒川(現新発田市)の小休所(武藤邸)で15分ほど休憩した. 武藤邸では飯豊山(加治川上流か)の雪を,前日から山入りし中継所を通して走って運び一行が到着する前に運び込み,小盥(たらい)に入れて玉座に置いていた. つかの間だけ玉座付近を涼しくするために掛けた労力は大変なものだったと推察されるが,これも新潟県庁からの事前の通達で各地の旧家が最大限天皇の接待に努力した結果と言える.
- 5. 長岡行在所の庭園に造られた雪山: 9月22日,天皇一行は,三条の行在所を出発し長岡の表町小学校内に新築された行在所に到着された.長岡行在所の周囲には庭園も造られ,その一部には天然の雪を積んで冨士山形の雪山が築いてあったという.しかし,前夜から徹夜で多数の人夫を使って築いたこの雪山は,非常な暑気のため夕方の到着時には見る影もなかったという(北越新報社/編,1927).この明治11年は殊の外暑気甚だしかったということである.当時雪室が沢山あった長岡でも9月になって集めた貯蔵雪はそれ程多くなかったと推察される.その上に暑気がたたって雪氷冷熱を献上し損ねたのであろう.
- 6. **宮本**, 外波での雪氷献上と本稿のまとめ: 上記のほか, 9月15日には宮本(現長岡市)で,9月28日には外波(現糸魚川市)での昼食時に,氷或いは雪を15斤用意したことが明治天皇北陸御巡幸記(西頸城郡郷土研究会,1919)に記載されている(詳細不明).以上のように,明治天皇が北陸・東海道巡幸中,新潟県内の7箇所で天然雪氷の献上を受けた事蹟から,明治初期の新潟県内において,雪室が各地に造られ貯蔵雪を販売する商売が成立していたこと,新潟など消費地には川船を使って雪を運搬していたこと,新潟の信濃川河畔には「氷室町」という雪の一時貯蔵のための倉庫(氷室)街があったことなどが明らかにされた.

南岸低気圧の通過に伴なう冠雪害の発生域

〇松元 高峰(新潟大学災害·復興科学研究所)·伊豫部 勉(京都大学大学院工学研究科) ·河島 克久(新潟大学災害·復興科学研究所)

1. はじめに


多雪地域で冬型降雪に伴なって起こる冠雪害は多いが、南岸低気圧もしくは二つ玉低気圧による大雪に際して、太平洋側などで森林の冠雪害が発生することも決して稀ではない. 近年では2014年2月13日から15日にかけて、南岸低気圧通過時の降雪により、太平洋側の各地で森林の冠雪害が発生している. 冠雪害の発生には、誘因としての気象条件だけではなく、素因としての地形条件と林分条件も大きく影響するが、南岸低気圧の通過に際して冠雪害の発生しうる気象条件が生じやすい地域を知ることは、リスク対策を考える上で重要な知見になるであろう. そこで本研究では、これまでの南岸低気圧もしくは二つ玉低気圧による大雪に伴なう冠雪害発生域の情報を収集するとともに、主要な事例について冠雪害発生時の降雪量(とくに湿降雪量)や風速といった気象要素の比較を行なう.

2. 2014年2月の冠雪害発生域

2014年2月13日から15日にかけて日本付近に接近した南岸低気圧は全国各地に降雪をもたらし、九州から東北南部までの非常に広い範囲で冠雪害の発生が確認された(図1). 九州では大分県の8市で冠雪害が確認されており、そのうち日田市では倒木によってJR久大本線の列車が脱線するという事故が発生した. 近畿では和歌山県田辺市と九度山町での発生が確認されている. 中部では、三河高原の北部から身延山地にかけての東西に延びる領域(長野県根羽村、愛知県豊根村・東栄町、静岡県浜松市天竜区・川根本町・静岡市葵区ほか、山梨県身延町・南部町)において冠雪害が発生した. この領域の東部に位置する AMeDAS 佐久間や南部では湿降雪量が 100mm 前後に達している. 関東南部では、埼玉県の秩父周辺5市町村、東京都青梅市、さらに房総半島中央部にあたる千葉県君津市周辺でも冠雪害が確認された. 関東北部から東北南部では、栃木県南西部の足尾山地において広範囲に甚大な冠雪害が発生しており(松元ら、2015)、また福島・茨城・栃木にまたがる八溝山地・阿武隈山地一帯でも各地で冠雪害の発生が確認された.

3. 過去の南岸低気圧に伴なう冠雪害発生域

論文や報告書等に記載されている過去70年間の冠雪害のうち、南岸低気圧もしくは二つ玉低気圧の通過に伴なう降雪が原因とみられるものは17事例あり、九州(福岡・大分)、中国(島根)、四国(徳島)、近畿(奈良・京都)、中部(岐阜)、関東(東京・神奈川・千葉・栃木・茨城)、東北(福島・宮城・岩手)の各地域で被害が確認されている。このうち被害が広域に及んだ事例としては、1972年1月15~16日(阿武隈山地から北上山地一帯)、1980年12月23~25日(八溝・阿武隈山地一帯から岩手県中部)、1986年3月22~24日(東京・神奈川・京都・奈良・徳島)に発生した冠雪害が挙げられる。また八溝山地・阿武隈山地一帯では、上記2例のほかにも1960~70年代にかけて冠雪害が繰り返し発生していたことが分かっている。それらのうち被害が最も甚大だったのは1980年12月23~25日の事

例であるが、このときに冠雪害の発生が確認されている栃木県那須町棚橋(地点1)や福島県古殿町入道(地点2)などのスギ林では、2014年2月にも同一かごく近隣の斜面で冠雪害が発生していたことを確認した. 八溝山地・阿武隈山地一帯は、南岸低気圧に伴なう冠雪害の発生危険度が高い地域のひとつと言うことができるだろう.

図1 2014年2月13~15日における冠雪害発生地域の分布. 冠雪害発生域の概略を灰色で示す.×は本文で言及する冠雪害発生地点を示す.

気象条件に対するスギ冠雪重量の成長と落下の関係

○勝島隆史(森林総研)・嘉戸昭夫(富山県農林水産公社)・

相浦英春(富山県農林水産総合技術センター森林研究所)・南光一樹(森林総研)・鈴木 覚(森林総研)

1、研究背景と目的

多量の降雪にともなう樹冠への着冠雪によって、樹木の幹折れや根返りなどの冠雪害が発生する。冠雪害は、多額の林業被害や道路鉄道の交通障害を発生させる。気象データを用いて樹冠への冠雪重量を定量評価することが出来れば、冠雪害の発生危険の評価・予測が可能になることから、積雪地域の的確な林業経営や森林管理および、道路鉄道路線管理に繋げることができる。しかしながら既往研究では、どのような気象条件で冠雪がどのように成長し、どのように落下するかについて、数例の観測が実施されているだけで詳細に分かっていない。本研究では、冠雪重量の評価モデルの開発に向けて、冠雪重量を測定し、気象条件との関係性の解析を行った。

2、研究手法

スギへの着冠雪を対象とした冠雪重量の測定を、森林総研十日町試験地内の露場において実施した。伐採したスギの先端部を自立固定用の架台に設置し(図 1)、着冠雪に伴う重量変化を架台下部に設置したロードセル(共和電業 LC-500KJ、分解能 0.25 kg)を用いて測定することで冠雪重量の時系列データを取得した。重量は 10 分間隔で測定した。十日町市内の近隣の林分から伐採した樹高 10.9 m、胸高直径 21.3 cm の 42 年生のスギの先端部を使用し、樹高 6.8 m、枝下高 2.5 m、樹冠投影面積 3.0 m² とした。得られた冠雪重量のデータと、同露場内で観測した気象データ(気温、風速、日射量、降水量)を用いて、気象条件に対する冠雪重量変化の関係性を解析した。

3、結果と考察

図 2 に、測定した単位樹冠面積あたりの冠雪重量の 1 時間値の時間変化を示す。全体的な傾向として、夜間に冠雪重量が増加し、日中の日射と気温上昇により冠雪重量が減少する傾向が見られた。高橋(1952)や渡辺(1964)では、21-22 kg/m² 程度の冠雪重量においてスギの冠雪害が発生したことが報告されており、今冬の十日町では、これと同程度の降雪イベントが数回発生していた。図 3 に、1 時間の単位樹冠面積あたりの冠雪重量の増加量を田村式降雪強度計で測定された降水量で割った着雪率の、気温に対する関係を示す。ここでは降水量 1 mm/hr. 以上で、それぞれの 1 時間で重量の 10 分間値に減少が発生しなかったものに限定した。図より、気温-1~+0.5 ℃において降雪が多く発生しており、この同じ温度帯の中でも着雪率に大きなばらつきが見られた。気温 0 ℃以上と以下で着雪率に大きな差異は見られなかった。また、気温-1 ℃以下の気温帯については、降雪事例が少ないため気温との関係を議論することはできなかった。

図1 冠雪重量測定装置

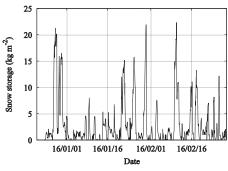


図2 冠雪重量の時間変化

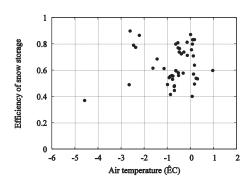


図3 気温に対する着雪率の関係

遠赤外線融雪装置による崩落雪対策

○町田敬¹⁾, 関根伸幸²⁾, 大崎智³⁾, 町田誠¹⁾, 松井富栄¹⁾, 新井智⁴⁾, 宮谷繁⁴⁾, 北谷公昭⁴⁾
1) 町田建設(株) 2) 新潟国道事務所 3) 長岡国道事務所湯沢維持出張所 4)(株)ユニ・ロット

1. はじめに

写真1に示す国道17号湯沢町芝原トンネル新潟側坑口には、高さ3.8mのせり出し防止柵が設置されているが、大量降雪時には吹き溜まりによる埋没が生じ、斜面や柵からの崩落雪が発生する恐れがあり、写真2に示すように人力による除雪作業が実施されている。見通しの悪いトンネル坑口への崩落雪の流出は、通行車両へ甚大な被害を及ぼす危険性が高く、常に安全を確保しなければならない。

本文においては、この地点へ遠赤外線融雪装置を設置し、せり出し防止柵背面の融雪を実施した事例を報告する.

写真1 芝原TN坑口全景

写真2 除雪作業状況

2. 融雪装置の概要

遠赤外線融雪装置は、せり出し防止柵頂部に設置した。遠赤 外線放射体から放射された遠赤外線は、雪に当たり吸収される ことにより水分子や結晶を振動させて熱エネルギーに変換され 融雪をもたらす。また、可視光線や近赤外線は、水や氷に吸収 されにくく表面で反射されるが、遠赤外線は吸収率の高い波長 帯域のため、雪面よりも深く浸透する特徴を持っている。また、 本装置は上から面で照射するため、雪が積もった後からでも融 雪効果が高い。今回設置した遠赤外線融雪装置(UFW-4000) の仕様を表1に示す。

表1 遠赤外線融雪装置の仕様

外形寸法	W884×D433×H370 (mm)			
重量	約 12kg			
材質	本体:ステンレス 反射板:アルミニウム			
最大出力	4000VA(50/60Hz)※実負荷電流 20A			
使用温度	-20°C∼+10°C			
放射体	2kW 特殊コートハロゲンヒーター2本			

3. 融雪範囲

遠赤外線融雪装置1台あたりの新雪(雪密度:70から100kg/m³)の融雪能力範囲を図3および図4に示す.設置高さ3mの場合,時間融雪1cmの範囲は3m×4mである.また,豪雪地帯では、設置間隔を狭めて重ね照射による遠赤外線量を増加させ融雪能力を高める事が可能である.また,小雪地帯では設置間隔を広げ重ね照射による遠赤外線量の削減が図られるため、設置基数の削減が可能である.

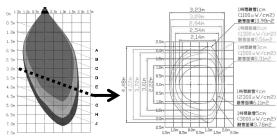


図3 垂直方向融雪能力範囲 図4 水平方向融雪能力範囲

4. 融雪効果の検証

融雪システムの制御は、降雪センサーによる降雪検知に加え OFF 信号の受信後5時間の遅延稼動を行うように設定した。また、同時に積雪深センサーにより融雪範囲において積雪深1m以上で稼動するよう設定した。融雪効果については、写真3 および写真4に示すように、非融雪範囲の積雪深が124 cm対して、融雪範囲は地表面が露出するまで融雪されていた。

2015年12月15日から2016年3月18日の集計データから、融雪システム全稼働時間は、1,065時間(稼働率46.7%)であった。 融雪システムのONからOFFを1イベントとする稼働イベントは46回であった。1回の稼働時間の平均は約23時間(1,065時間/46回)となった。また、今シーズンは例年に比べ積雪が少なく、融雪範囲では積雪深センサーの制御高さ(地面から1mに設定)に達すること無く、降雪センサーだけの制御となった。

写真3 融雪状況(1)

写真 4 融雪状況 (2)

5. 今後の課題

ランニングコストの低減について、今冬の稼動状況と降雪センサーのみによる遅延稼動をさせない制御を比較すると、以下のように稼動時間の削減が可能と考えられた.

降雪検知 OFF 後の遅延稼動 5 時間を停止した場合, ①5 時間 ×46 回=230 時間の削減が可能である。また、降雪イベント中、絶え間なく降雪が続く事は少なく、1 回のイベント(平均 23 時間として)に対して、少なくとも 3 時間程度の降雪小休止が存在すると仮定すると、遅延運転をしない事で②3 時間×46 回=138 時間の削減が考えられる。よって、今回の制御方法において、遅延運転を無しにした場合は、①230 時間+②138 時間の 368 時間の稼働時間削減(35%減)が見込まれる。また、せり出し防止柵背面のようにある程度積雪があっても支障がない場合は、積雪センサーのみの制御も効率的と考えられ、今後の課題として検証して行く予定である。

雪崩の規模推定のための数値シミュレーション結果の比較

○石田孝司・松下拓樹・池田慎二(土木研究所),田中頼博(奥山ボーリング(株))

1. はじめに

大規模斜面において雪崩対策施設を計画する場合、雪崩予防柵等の発生区対策よりも雪崩防護工等の走路・堆積区対策の方が、コスト、施工性や自然環境への影響の面で有利な場合がある。しかし、走路や堆積区における雪崩防護施設の設計に際し、雪崩の流下経路や幅、高さといった設計諸元は経験的な手法に基づいて設定される場合がほとんどであり、合理的な手法は確立されていない。一方で近年、雪崩の流下経路や高さを算出できる連続体モデルが複数提案されており、これらの雪崩防護施設計諸元設定への適用の可能性を検討しているところである。本稿では2013年2月に福島県南会津郡檜枝岐村において地震により誘発されたと考えられる乾雪表層雪崩を対象とし、張ら(2004)により開発されたモデルを適用して、モデルの解析パラメータを変化させた際の計算結果を比較したので報告する。

2. 検討方法

検討対象とした雪崩発生斜面の全景および概要を図1に示す。実施した4ケースの解析パラメータは表1に示すとおり、密度は260kg/m 3 とし、内部摩擦角および底面摩擦角を変化させた。

3. 検討結果

計算結果として各ケースの雪崩通過中 および堆積時の雪崩最大層厚を図2に示 す。内部摩擦角を違えた Case1 と Case3 との比較では計算結果に大きな差異は見 られなかった。内部摩擦角を一定とし底 面摩擦角を1から5°の間で変化させた Case2 から Case4 を比較すると、走路が 谷地形に規制されているためか、走路の 流下幅に違いはほとんど見られないほか、 到達距離は Case2 で約 30m の未達とな ったものの、Case3・4では概ね再現で きた。一方で堆積幅は実際が 118m であ るのに対し、Case2 は約 300m、Case3・ 4はそれ以上となった。これはモデル内 で内部摩擦角によるせん断強度よりも雪 の自重によるせん断応力が勝ることが理 由として考えられる。

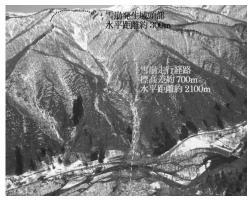


図 1 2013 年 2 月に発生した乾雪表層雪崩発生斜面 (福島県撮影)

	表 1	解析パラメータ	
	密度	内部摩擦角	底面摩擦角
	(ρ)	$(\Phi_{ ext{int}})$	(Φ_{bed})
	[kg/m ³]	[degree]	[degree]
Case1	260	30	3
Case2	260	20	5
Case3	260	20	3
Case4	260	20	1

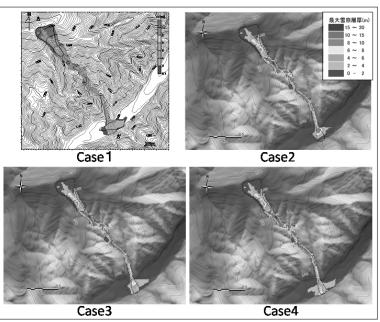


図2 各ケースの計算結果 (雪崩通過中および堆積時の雪崩最大層厚)

雪崩規模の推定精度向上のためには多くの事例解析が必要であり、さらに検討を進める予定である。 参考文献

張馳・吉松弘行・岩堀康希・阿部真郎 (2004): 数値解析による崩壊土塊の到達範囲予測,日本地すべり学会誌,41(1),pp.9-17,2004

2015 年ネパール地震時に発生した雪崩の被害と積雪深の関係

○伊藤陽一¹・山口悟¹・西村浩一²・藤田耕史²・和泉薫³・河島克久³・上石勲¹(1 防災科研・雪氷・2 名古屋大・3 新潟大)

はじめに

2015 年 4 月 25 日に発生したネパール・ゴルカ地震およびその余震(5 月 12 日)により、ネパールのランタン谷では雪崩や雪と土砂が混合したなだれが誘発され、斜面下方の集落を襲った。これら雪・土砂なだれにともなう爆風によるとみられる家屋や樹林の倒壊だけでなく、大規模なデブリに集落が埋めつくされるなど壊滅的な被害が生じた結果、村の人口の 1/4 に相当する約 180 名に加えて外国人トレッカーなど 100 人以上も犠牲となった 10.

ランタン谷を襲った大規模なだれについて、現地調査や当時の気象状況の解析などを行ったところ、

- 1) 地震後まず雪崩が発生し、その大部分は氷河氷ではなく積雪起源である可能性が高い
- 2) 雪崩の後に土砂を含むなだれが発生した
- 3) 地震発生時には標高 5000 m 以上の地域に約 1.5 m の積雪があり、その再現期間は数十~百年程度とみられる

などの結果が得られた。これらの情報から、当初は地震で氷河の一部が崩落したのがきっかけとなり大規模なだれが発生したと思われたものの、実際は多量の降積雪があった状態に大地震の発生が重なったために大規模なだれが誘発された可能性が高いと推測された。そこで、本研究では積雪深によるなだれ被害の大小を見積もることを目的に雪崩運動シミュレーションを行った。

方法と結果

連続体モデル Titan2D を用いて ALOS によって得られた $5 \, \mathrm{m} \, \mathrm{$

図1に計算結果の一例を示す.発生区の積雪深が増加すると雪崩の堆積範囲も拡大している様子がわかる. 今後は被害のあった各流域で計算を行い,どの程度の積雪深(およびその再現期間)から大きな被害が生じる可能性があるかを見積もる予定である.

参考文献

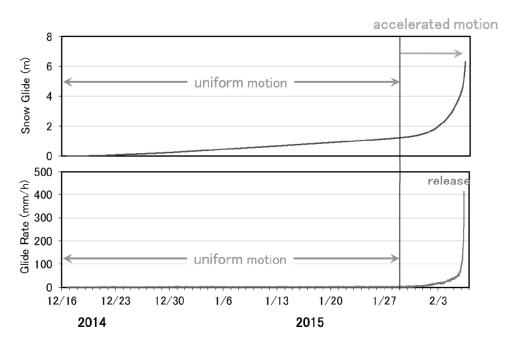
1) 文部科学省科学研究費補助金(特別研究促進費)「2015 年ネパール地震と地震災害に関する総合調査」報告書,2016,165pp.

図1 厚さ 0.5 m 以上のデブリ堆積 範囲(左:発生区の積雪深 0.5 m; 右:発生区の積雪深 1.5 m の場合)

全層雪崩の発生に至る積雪グライドの加速過程

○河島克久(新潟大学) 伊豫部勉(京都大学) 松元高峰(新潟大学) 渡邊美徳・鈴木修・鈴木博人(東日本旅客鉄道株式会社)

1. はじめに


全層雪崩(glide avalanche)の研究は古くからあるものの、その予測手法は未だ確立されているとは言えない。これは、全層雪崩が水の積雪内への供給・浸透、積雪層構造、地形、植生などが複雑に相互影響して発生すること、及びこれらに関する理解やデータ蓄積が不十分であるためである。本研究では、温暖積雪地域の雪崩斜面において、全層雪崩の発生要因として極めて重要である積雪グライド観測を行い、全層雪崩の発生に至る積雪グライドの加速プロセスを調べた。

2. 観測斜面と方法

積雪グライド観測は、小千谷市真人町の信濃川に面した南東向き斜面と魚沼市大白川の破間川に面した北西向き斜面において、それぞれ 2012/13 年冬季と 2013/14 年冬季、2013/14 年冬季と 2014/15 年冬季に行った。 観測斜面は、真人町は標高 90~160 m、斜面長約 140m、傾斜 40 度、大白川は標高 310~430 m、斜面長約 150m、傾斜 35~40 度程度の自然斜面であり、低中木が密生している。 積雪期には低中木は倒伏し、その上を斜面積雪がグライドする。 両斜面とも観測にはソリ式グライドメータ(大川ら、2012)を用いた。

3. 観測結果

観測期間中、両斜面では合計6回の全層雪崩が発生し、そのうち少なくとも3事例で良好なグライドデータが得られた。グライド量及びグライド速度の時間変化の代表例を下図に示す。グライド速度の変化を解析した結果、全層雪崩の発生に至る積雪グライドの加速過程は uniform motion, constant acceleration motion, increasing acceleration motion の3段階のステージからなることが明らかになった。この中で、最後のステージは全層雪崩の短時間予測にとって最も重要であるが、このステージではグライド加速度がグライド速度の2乗に正比例する関係が成立することが分かった。これは、Nohguchi (1989) がグライドの数理モデルの研究によって四半世紀以上前に示した関係と同じである。

2014/15年冬季におけるグライド量及びグライド速度の時間変化の一例(大白川)

降雪深強度計の開発 - 2015-2016 積雪板式時間降雪深計との比較-

○石丸民之永・山崎正喜・羽賀秀樹(新潟電機株式会社) 熊倉俊郎(長岡技術科学大学)

1. はじめに

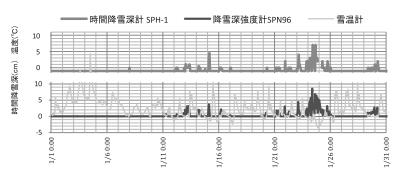
降雪量の多寡を議論するとき降水量換算値は単純積算できる利点はあるが社会生活上、人間の見た目の感覚と多少ズレがあり、できれば降雪強度を<u>降雪の深さ</u>で表せないか検討している。雪片が着地し積雪となると圧密 沈降 雪面剥離などで降雪深量は変動するが、これら変動要素に関係しない降雪々片を空間で計測する方法として従来からある雪片の計数だけでなく多少ではあるが雪片の寸法要素を取り込んでいる透過光式降雪センサーを昨冬試作し報告した。今冬それに一部改良を加えて測定原理の異なる回転積雪板式時間降雪深計との比較実験を行ったのでその結果を報告する。

2. 供試測器、測定方法及び実験環境の概要

透過光式降雪センサー (SPN-96) の外観は右図の通りで 感知域光膜は $10(W) \times 72(L) \times 3(H)$ の大きさである。

降雪深は降雪々片の大きさを測り球形と仮定してその 体積を演算積算後、光膜面積で除して算出している。 雪片径の測定可能範囲は 0.3mm から 7.6mm で最大径

写真 1 SPN-96


SPH-

 $(\phi 7.6)$ 以上の雪片は表示値 $\phi 7.6$ に集約している。昨冬実験で投受光窓部分に着霜や着雪するなどセンサー部の加熱乾燥が課題として分かったのでこの部分の改良を行った。

<u>降雪の深さ</u>の比較測器として回転積雪板式時間降雪深計(SPH-1 回転積雪板+光電透過式、回転積雪板 上の積雪深を 5mm ピッチの光透過式積雪深計で 5 分ごとに計測し、毎正時に回転積雪板を反転させてリセットする)を用いた。実験場所は昨冬同様長岡市内住宅街にある当社構内の露場で行った。

3. 結果

2016年1月の時系列計測状況を図1、「積雪板式時間降雪深計(SPH型)」とのイベント毎の相関を図2に示す。図3、図4に同時刻での「SPH型」との比較を同スケールでグラフを重ねることにより示した。 両者は一部合致していない時間もあるが全体としては良く対応している。

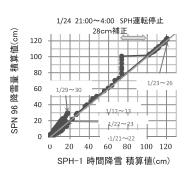


図 2 2016/01 相関

時間降雪深計 SPH -1 連転停止

/26 0:00

図3 2016/01/21~1/23 参考文献 1)各種降雪センサーによる時間降雪深の比較Ⅲ

図 4 2016/01/23~1/26

雪氷研究大会(2015·松本)講演要旨集, P269

1/23

光学式ディスドロメーターにおける固体降水粒子の粒径評価に関する考察

○横田佑多¹, 熊倉俊郎¹, 石丸民之永²

1 長岡技術科学大学大学院工学研究科,2 新潟電機株式会社

1. はじめに

光学式ディスドロメーターの様なレーザーシートを水平に張る光学式の降雪粒子測定器は,端に落ちた粒子のサイズを過小評価してしまう.端に落ちた粒子を観測対象外とすると,比較的小さな粒子の割合が非常に高くなり,粒度分布が偏ってしまう.よって今回は簡単な条件のもと,統計的な考察を基に端にかかる粒子を本来の大きさに補正することが可能か検討を行う.

2. 方法

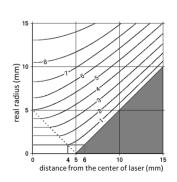


図1 落下位置によって過小評価される粒子半径の変化

よって、任意の半径rの粒子がどのような確率で過小評価されるかが論理的に計算することができる.

3. 結果と考察

半径rごとの粒径分布が与えられたとすると、半径ごとの頻度分布が計算でき、それと図1のチャートを用いて実効半径 r_e ごとの頻度分布を得ることができる。実際の機器で計測されると考えられるのは r_e である。それを図2に示した。実線が今回行った理想的な状況での Marshall-Palmer 分布を利用した頻度分布(real)で、点線が計測される頻度分布(effective)、一点鎖線が粒子半径ごとのそれらの比率 (effective/real)である。前述のように、小さな粒子の数が多く大きな粒子の数が少なく計測される結果となり、その定量的な評価が可能であることがわかった。図3は透過型降雪センサーSPN-96で実測された一例である。図2の点線は実際には図3のようになる。これは実際の測定ではシートの厚みや粒子の落下速度を考慮するためであると考えられる。逆行列を用いた数値計算を行うことで、計測後の粒子の個数から実際に降った粒子の個数を求めることが可能であると思われる。

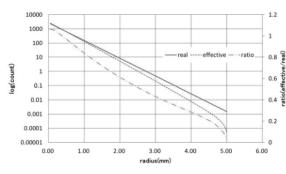


図2 計算された頻度分布

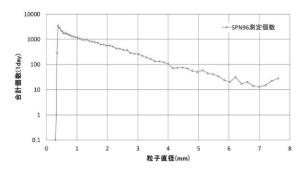


図3 SPN-96 での測定結果(2016/01/23)

4. まとめ

測定された頻度分布は小さな粒子の数が多く大きな粒子の数が少ない. 正しい頻度分布に戻すため,シートの厚みや落下速度を考慮した場合に粒子がどのように評価されるかを検討する必要がある.

固体降水種別の粒径分布に関する研究

○須貝祐介¹, 熊倉俊郎¹, 本吉弘岐², 中井専人², 石坂雅昭 1長岡技術科学大学大学院環境社会基盤工学専攻 2防災科学技術研究所雪氷防災研究センター

1. はじめに

降水の粒径分布の研究は雨に関するものは Marshall and Palmer(1948)、雪片に関するものは Gunn and Marshall(1958)、Scott(1982)によるものなどがあるが、観測方法や気象状況によって異なる。そのため本研究では、長岡での降雪に対する雪片とあられの粒径分布を求め降水強度や降水パターンなどの気象条件との関係の解析を行う。ここでは個数濃度から粒径分布を求め、統計的な処理を行い雪片とあられの粒径分布の違いと降水強度との関係を解析した結果を示す。

2. 粒径分布

粒径分布は指数分布で、 $\frac{dN}{dD} = N_0 e^{-\lambda D}$ で表される。ここで、D は粒子直径、 $\frac{dN}{dD}$ は number size distribution(m^3 ・ m^3 ・ m^3)、 N_0 と λ はそれぞれ切片と傾きで本研究では未知数である。また、対象とする粒子直径 D とその範囲 δD の間で定積分することで任意の範囲内の個数濃度を求めることができる。本研究では、固体の大きさに基づくため Scott(1982)を参考にしている。

3. 観測

画像処理手法を用いた自動観測(石坂ら、2004より)による方法で観測された。縦 16cm、横 20cm、高さ 12cm の観測空間に落下してきた降雪粒子はランプにより照射されたときに白く見える。その様子を CCD カメラで捉え、 $\frac{1}{60}$ 秒の撮影間隔で撮影し、5 秒の内に 1 秒を撮影、4 秒でデータ処理を行う。使用データの観測日時は、2012年から 2014年の 1 月の 3 ヶ月である。使用データは、CCD カメラによって観測された固体降水粒子データ及び田村式降雪強度計の降水強度データ、PARSIVEL の天気略号データを使用した。

4. 解析方法

個数濃度から粒径分布を求める。粒径分布の一般式を定積分することで個数濃度の一般式が得られる。この式から実際の個数濃度のデータに対して最小二乗法を行い、パラメータ N_0 及び λ を求める。これらの求めたパラメータを用いて降水強度との関係を解析、考察する。その結果を元に、雪雲の形状の違いによる降水パターンLT(L、Tバンド)、VX(寒気内渦)、DM(地形性)、SY(低気圧)の4種類に分類した解析を行い、降水パターンの違いが粒径分布に与える影響を確認する。解析するにあたって観測誤差などを考慮し1mm以下及び各観測データの実際の観測個数10個以下のデータを取り除いた。また、当てはまりの良いデータのみ使用するために、横軸を粒子直径とした時の観測個数の頻度分布で度数が11個以上のビンの個数が多い上位5%のみを使用した。

5. 結果

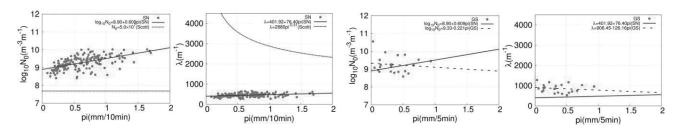


図 1. 降水強度と N₀及び λの関係(実線:本研究、破線:Scott(1982))

図 2. 降水強度と N₀及び λの関係(実線:雪片、破線:あられ)

ここでは降水強度とパラメータの関係についてのみ示す。図1は雪片の解析結果である。 N_0 、 λ 共にScott(1982)と異なる結果となった。また、図2はあられの解析結果である。雪片に関して、 N_0 は降水強度が大きくなるにつれて増加し、 λ はほぼ一定となった。あられに関して、 N_0 は降水強度が大きくなるにつれて減少し、 λ はほぼ一定となった。これらの結果から、 N_0 に関して雪片とあられで異なる挙動を示すことが分かった。

連続画像処理による降雪粒子観測装置における CCD カメラの画像取得頻度の違いによる測定性能への影響

○本吉弘岐1・石坂雅昭・椎名徹2(1防災科研・雪氷、2富山高専)

はじめに

降雪粒子の粒径・落下速度分布が正確にわかると、降雪粒子の種類の同定や、粒径・落下速度毎の粒子質量や密度の推定値を用いて降雪強度やレーダー反射強度を計算することが可能である(Ishizaka et al. (2013))。村本・椎名 (1988) により開発された降雪粒子の粒径・落下速度の自動観測手法は、落下中の降雪粒子の映像を解析するもので、市販の CCD カメラとパソコンによる処理系の基本構成はそのままに、CCD カメラやパソコンの性能の向上に伴い処理の高速化や装置の性能の向上を図れる点に特徴がある。防災科学技術研究所雪氷防災研究センターで稼働させている装置は、その派生型の一つであり、CCD カメラ映像の複数の粒子に対して、連続画像間で同一粒子の判別(マッチング)を行い、同一とされた各粒子の鉛直方向の移動距離と画像取得頻度から落下速度を計算する(椎名ら(2004))。今回、この装置の更新のため、従来と異なるフレームレートの CCD カメラを用いた装置を導入し、従来型と新型での同時観測を試みた。本発表では、同時観測における測定結果の違いについて紹介するとともに、この手法における画像取得頻度と粒子の落下速度毎の捕捉率の関係について議論する。

降雪粒子観測装置の概要(従来型と新型の CCDカメラの違い)

本装置は、黒い背景の前を通過する降雪粒子に左右2台ずつのLED投光器 (50W)により光を照射し、降雪粒子のみを白く写す暗視野の映像を収録し、2値化された粒子形状と連続する画像から終端落下速度を解析するものである。画像解析の詳細については、椎名ら(2004)に詳しいためここでは割愛する。ここで用いた新旧のCCDカメラの基本仕様は表1のとおりである。観測空間は、カメラの視野角と黒背景の手前に設けられたスリット幅から決まるH16cm×W12cm×D20cmである。今回、これらの2台のカメラは、同じ観測領域を共有している。

観測結果

図 2 は、(1)雪片または(2)霰の降水時の観測例であ る。点の色は、図に示した時刻の5分間の粒径・落下 速度毎の粒子数の積算から求めた単位体積、単位粒径、 単位落下速度あたりの粒子数濃度を表す。データの分 布範囲は両者でよく一致している。粒子検出能力を見 るために、1 画像あたりに検出された粒子数を比較す ると、この例では雪片では 1.3 倍程度、霰では 1.8 倍 程度と新 CCD による粒子の捕捉率が旧 CCD よりも高 くなっていた。連続画像から落下速度を求める際のマ ッチング成功数 (マッチ数)を比べると、新 CCD では 旧 CCD に比べて、雪片で 10.6 倍、霰で 12 倍にとな っており、単純な画像取得頻度の比(2.08倍)以上の 向上が見られた。これは、画像取得頻度が高くなった ことにより、連続画像間での粒子の移動距離が短くな ることで、マッチングの成功率が高まったこと、また、 鉛直分解能が倍になったことが影響しているものと考 えられる。新 CCD カメラにより滑らかな粒径・落下 速度分布の取得が可能になったため、今後は、降水強 度やレーダー反射強度の推定に対する影響についての 検討も行う。ただし、粒径が数 mm で落下速度の大き いところに見られるマッチングエラーの数も増加して いるため、アルゴリズムの検討も必要と考える。

	\sqcap CCD	新 CCD
機種	Sony	AVT Manta
		G-031B
カラー方式	モノクロ	モノクロ
走査方式	インターレース	プログレッシブ
インターフェース	NTSC	$_{ m GbE}$
処理画像の画素数	640×240	640×480
画像取得頻度(Hz)	60	125
観測空間から	水平 0.25mm	水平 0.25mm
決まる分解能	鉛直 0.5mm	鉛直 0.25mm
5分間あたりの	3600	7500
取得画像数		

表 1: 本装置に用いた CCD カメラの基本仕様

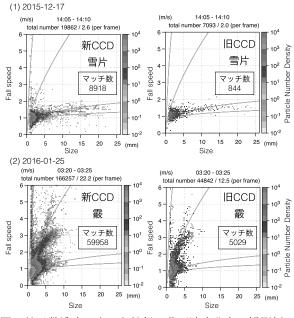


図 2:粒子数濃度で表した粒径・落下速度分布の観測例。 (1)雲粒付き雪片のケース、(2)霰のケース。

【参考文献】

- 1) Ishizaka, M., et al. (2013): JMSJ, 91, 747-762.
- 村本健一郎, 椎名徹 (1988): 電子情報通信学会論文誌 D, J71-D, 9, 1861-1863.
- 3) 椎名徹 他(2004): 雪氷, 66, 637-646.

固体降水国際比較実験プロジェクトのための上越サイトにおける

捕捉特性調査

○ 山下克也 (防災科研)、中井専人 (防災科研)、横山宏太郎 (防災科研)

1. はじめに

現在使用されている降水量計による固体降水量測定値には、不確定要素がある。不確定要素の主要因のひとつは、風による捕捉損失である。横山ほか(2003、以後横山 03)によると、気象庁の降水量測定に使用されている風除けあり溢水式や風除けなし温水式の転倒マス降水量計の雪に対する捕捉損失は、風速が大きくなるにつれて大きくなり、風速 2ms⁻¹でそれぞれ 2割、4割であることが報告されている。固体降水量に不確定要素があることは世界気象機関(WMO)でも以前から認識されており、不確定要素の把握、気候区による要因の違い等を明らかにするために、冬季に世界中で固体降水量を測定する固体降水国際比較実験(Solid Precipitation InterComparison Experiment: SPICE)プロジェクトが 2012 年から行われている。防災科学技術研究所雪氷防災研究センターは、2014 年に新潟県上越市の農研機構中央農業研究センター北陸研究拠点(37º06'56"N、138º16'23"E、10m ASL)に複数の降水量計を設置し、SPICE プロジェクトに参加している。本稿では、観測概要と初期的な解析結果を報告する。

2. 観測

SPICE プロジェクトでは、Double Fence Intercomparison Reference (DFIR) という八角形の 2 重の防風柵内に重量式の降水量計を組み合わせたシステムを参照器とすることが推奨されている。上越サイトでは、横山 03 が使用した DFIR に Geonor 重量式降水量計を設置している。その他の降水量計として、横山 03 で調査された

風除けなしの温水型転倒マス降水量計(RT-3)、風除けありの溢水 式転倒マス降水量計 (RT-4WS、WS は Wind Shield の略)の他 に、風除けあり RT-3 (以後、RT-3WS)、風除けなし RT-4 (以後、 RT-4)、田村式降水強度計 (以後、Tamura)、光学式ディスドロ メーターである Laser Precipitation Monitor (LPM)を設置して いる。データは 1 分間隔でデータロガー (CR1000) に記録され ている。観測は、2014年1月17日から4月15日まで、2014年 11月17日から2015年5月12日まで、2015年11月12日から 2016年4月までの3冬季実施した。解析には、SPICEプロジェ クトのプロトコルに従った Quality Control (QC)を実施したデータを用いた。

3. 解析結果

DFIR 内の Geonor を基準とした場合の各降水量計の捕捉率を図1に示す。観測始めから3月31日までの積算降水量の比を、観測期間全部および観測時の気温の正負に分けて示している。全ての降水量計で捕捉損失があること、固体降水が降っていると考えられる気温が負の場合に捕捉率が小さいこと、風除けありは風除けなしに比べて捕捉率が少し大きいことが分かる。発表では、降水イベント毎の捕捉率と風速の関係、捕捉率と風速を表す関係式なども示す予定である。

謝辞:本研究の一部は、防災科研と農研機構の共同研究「固体降水の量と種類の計測に関する研究」により行いました。 参考文献:横山宏太郎ほか(2003):雪氷,65,303-316.

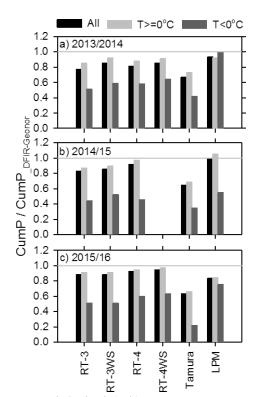


図1、各冬季の観測始めから3月31日までのDFIR内Geonorとその他の降水量計の積算降水量の比。2014/15冬季のRT-4WSは、信頼性が低いので除いている。

ヒーター付き漏斗を持つ降水量計の濡れ損失:人工降雪を用いた実験室測定

○¹中井専人・²熊倉俊郎・²広川貴大

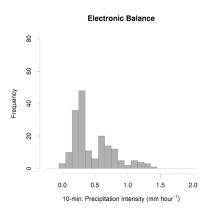
(1:防災科研雪氷, 2:長岡技大)

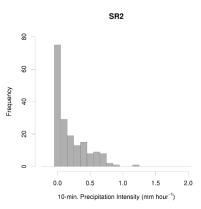
1. はじめに

近年、気象庁では溢水式降水量計(RT-4型)から温水式降水量計(RT-3)型への置き換えが進み(日谷,2015)、また国土交通省等でもヒーター付き漏斗を持つ降水量計がよく用いられている。漏斗面における蒸発による損失(濡れ損失,wetting loss,以後WLと表記)の見積もりは、正確な冬季降水量の算出を通して雪水災害危険性の判断と気候変動評価の両面に影響する課題である。その基礎データを得るため、人工降雪を用いた実験室測定を行った。

2. 実験室測定

雪氷防災研究センター新庄雪氷環境実験所にある雪氷防災実験棟(CES)では、風のない実験室で樹枝状の人工降雪を大量に降らせることができる。この室内に、ヒーター付漏斗型受水口を持つ田村式降雪強度計SR2(Tamura, 1993)を設置して降水量と漏斗面温度を自動計測すると共に、電子天秤を用いて比較器準用の積雪重量を測定した。SR-2は均一な大きさの微小水滴を生成、カウントするので、分解能が高くかつ転倒ます機構によるロスがない。また室内実験であり風の影響がないため、風による捕捉損失もない。従って、本実験ではWLのみを独立に評価できる。ヒーター付きで受水口漏斗面の温度が高いため、損失の主要因は漏斗面上の融解水滴の蒸発損失と考えられる。電子天秤による積雪重量を降水量の真値とみなして積算降水量の損失比率を求めた。


3. 結果


実験結果を図に示す。この結果に基づく考察から、結論は次のようにまとめられた。

- ・WLをoffsetと考えると、無風状態において基準降水量との比較実験、観測によってその値を求めることができる。
- ・SR2は無風時に平均約0.36 mm hour-1のWLがあり、これに満たない降水量は0mmとカウントされる。 観測において、この損失分は「感度以下」と同様であり、復元できない。

文献:日谷道夫, 2015: 周辺環境から見積もったアメダス観測所の粗度 ―雨量計に関するメタデータ構築の試み―. 天気, 62, 455-458. Tamura, M., 1993: An automatic system for controlling snow on roofs. *Ann. Glaciol.*, 18, 113-116.

謝辞:実験においては新庄雪氷環境実験所の望月重人、大川元造両氏にサポートいただきました。本研究はCES共同研究「光学式降雪量・降水種測定機器の開発に関わる基礎研究」、防災科学技術研究所運営費交付金「高度降積雪情報に基づく雪氷災害軽減研究」により行いました。

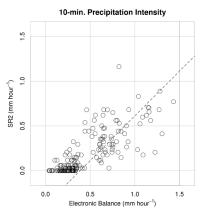


図 (左)電子天秤と(中)SR2の10分降水強度頻度分布及び(右)両者の散布図

関東甲信地方に大雪をもたらす Cold-Air Damming *本田明治 ¹、山崎 哲 ²、吉田 聡 ²、岩本勉之 ^{2,3}

1: 新潟大学理学部 2: 海洋研究開発機構 3: 北海道紋別市

1. はじめに

2014年2月14日~15日の南岸低気圧の接近は、関東甲信地方を中心に記録的な大雪をもたらし、各地で最深積雪の極値を更新した。特に山梨県では1.5~2倍以上の積雪深を記録した(甲府114cm(これまでの記録49cm)、河口湖143cm(89cm))。通常の南岸低気圧による降雪は12時間程度であるが、今回の特徴は降雪が長時間継続したことで、甲府で28時間、河口湖で29時間連続降雪を観測した。24時間以上に及ぶ今回の降雪の後半は、南岸低気圧接近時にみられる降雪の特徴をよく表しているが、先行する前半の降雪は南岸低気圧が九州南方に位置している段階で始まっていた。JRA-55再解析データを用いて総観場・大気循環場の解析の結果、Cold-Air Dammingと呼ばれる現象が大きく寄与していることが明らかとなった。

2. 気象概況と総観場・大気循環場の特徴

今回の大雪をもたらした南岸低気圧は13日夜に沖縄の南方で発生し、本州の南海上を発達しながら北東進し、15日の午前中に関東南岸をかすめていった。東海~甲信地方では14日早朝から降水が始まり、気温の低かった甲信地方では降雪となった。降雪は14日夕方に一時弱まったが、南岸低気圧が東海沖に接近した14日夜から15日午前にかけては再び強まり、関東地方も広域で降雪となった。

図1は降雪ピーク時に近い15日3時(日本時間)を起点とした後方流跡線解析の結果である。800hPaの空気塊は54時間前には北海道付近にいて、南東進して本州南東方海上で高気圧性循環を伴い、最後は北西進して関東甲信地方に到達している。後者の空気塊は海上では950hPa~1000hPaの大気最下層を通過した後に、関東甲信地方の最下層の空気に乗り上げるようにして、800hPaの高度に達しており、最終的には7g/kg以上の比湿を持っていた。

本州東方海上からの高気圧性循環に伴う南東方向からの流入は 14 日早朝の時点で既に明瞭で(図略)、この時点で九州南方に位置していた低気圧から北東方面に延びる水蒸気フラックスの収束帯が東海~甲信地方まで及び、14 日早朝から降水(甲信地方では降雪)をもたらしたと考えられる。

14日の天気図をみると(図2)、北海道~東北地方では1030hPaを越える高気圧が張り出していた。この時期と

しては強い高気圧であり、顕著な東回りの流入をもたらしていたと考えられる。この時期日本のはるか東方にブロッキング高気圧が停滞し、オホーツク海には、東進を阻まれ北上して発達した低気圧がみられ、これに伴う寒気流入とともに沿海州方面から高気圧が北日本に帯状に延びてきたと考えられる。

SLP 分布を詳しくみると、南岸低気圧の北東側には北方から高圧部が張り出し(図 2)、それに伴い非地衡風的な北東風による寒気移流が関東平野部に入りやすく、広く0℃前後のエリアに覆われている(図 3)。いわゆる Cold Air Damming (CAD)の特徴をよく捉えており(荒木,2015、天気)、上空1500m付近までこの構造が見られた。流跡線解析の結果も整合的で975 hPa、925hPaの空気塊は54時間前には沿海州方面にいて、日本海上を南東進して東北沖合で高気圧性回転し、更に南西進して関東甲信地方に流入している(図1)。対流圏上空では北日本の東方海上のジェットのコアが見られ、ジェット入口の子午面循環が対流圏下層の北寄りの非地衡風成分を強めていることが示唆される(図略)。Bailey et al. (2003, WF)による北米でのCADの分類を仮に適用すると、北方の高気圧が1030hPaを越える強いタイプのCADに対応する。

1953 年以降、甲府で 40 cm 以上の降雪深が観測された事例は、今回を含め 5 事例ある。他の 4 事例はいずれも40 cm 台で関東平野各地でも $10 \sim 30 \text{cm}$ 程度の降雪があり、降雪継続時間は $12 \sim 15$ 時間程度と、今回の事例の半分程度である。この 4 事例中 3 事例は CAD の特徴を示していたが、北方の高気圧は 1020 hPa 程度であり、流跡線解析によっても高気圧性循環による流入は弱かった。

3. 終わりに

2014年2月14日~15日の南岸低気圧の接近は、甲信地方で24時間を越える降雪をもたらした。後半の降雪は低気圧の接近に伴う降雪の特徴を示していたが、前半の降雪は北日本に1030hPaを越えて発達した高気圧に伴う本州東方から顕著な流入が、南岸低気圧の前面で水蒸気フラックスの収束域を形成していたためと考えられる。この時期ブロッキング高気圧が本州東方海上に停滞し、先行の南岸低気圧がオホーツク海で発達したことによって顕著な寒気流入を伴い、北日本の高気圧の勢力を強め、CADによる寒気移流も強かったと考えられる。

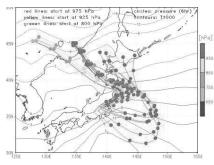


図 1. 2014 年 2 月 15 日 3 時 (日本時間)の関東甲信地方上空を起点とした後方流跡線解析 (54 時間)。975 hPa、925 hPa、800 hPa を起点として丸印は 6 時間毎の位置。

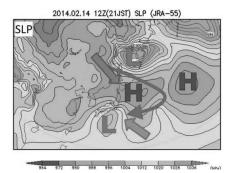


図 2. 2014年2月14日21時(日本時間) の海面気圧(SLP: hPa)。

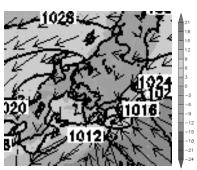


図 3. 図 2 に同じ。但し海面気圧 (hPa: 黒線)、地上気温 (℃: カラー)及び 1000 hPa の風ベクトル

本研究は科学研究費(特別研究促進費)「2014年2月14-16日の関東甲信地方を中心とした広域雪氷災害に関する調査研究」の助成を受けています。

新潟県沿岸に停滞した帯状降雪雲の特徴 -2013年1月9日の事例-

*畠山光 1, 本田明治 2, 岩本勉之 2,3, 浮田甚郎 2

1: 新潟大学大学院自然科学研究科, 2: 新潟大学理学部, 3: 北海道紋別市

1. はじめに

新潟県柏崎市において、一晩に約40cmの集中降雪をもたらした2013年1月9日の事例について、ゾンデ観測および数値実験により得られたデータを用いて、停滞した帯状降雪雲の形成要因を明らかにする。

2. 使用データと数値実験設定

ゾンデ観測による高度、気温、湿度、風向、風速を用いた。また、数値実験には NCEP および NCAR が開発した数値モデル WRF (Weather Research & Forecasting Model) 3.5.1 版 (Skamarock et al., 2008, NCAR Tech. Note) を用いた。第1領域を日本海会な日本周辺、第2領

(Skamarock et al., 2008, NCAR Tech. Note) を用いた。第1領域を日本海含む日本周辺、第2領域を本州北部、第3領域を新潟周辺とし、格子点間隔をそれぞれ $9 \, \mathrm{km}$ 、 $3 \, \mathrm{km}$ 、 $1 \, \mathrm{km}$ とした。

3. 気象状況および数値実験の結果

9 日午前に気圧の谷が通過し、その後冬型の気圧配置となり、午後から 10 日未明まで上中越の海岸部に帯状の雪雲が停滞した。9 日 21 時のゾンデプロファイル(図 1)によると、地上 2500m までは風速 10m/s 以下の北東風で、その上空には西風が卓越していた。

数値実験では、9日の14時と18時の2回、海岸線に沿う帯状の上昇流域が到達し、特に19時からは4時間に渡って停滞する様子が再現された。この上昇流域は、下層で陸側から吹く東寄りの風と季節風との継続的な収束により長時間停滞していたことが分かった。このとき、上昇流は700hPa程度(約2900m)まで達しており、雪雲の形成が持続されていたと推測できる。

4. 降雪雲停滯の過程

WRF 出力値において雪雲停滞時の東西風を確 認すると、下層では 1000m 程度の高さを持つ東 風が吹いていた(図2)。気圧配置からも東風の場 であり、雪雲の停滞への寄与が示唆される。東寄 りの風の上層では西寄りの風が吹いており、風向 が変わる高度で弱風となっていた。柏崎上空では 750hPa(2500m)付近が弱風で、21時のゾンデ 観測とも整合的である(図1)。また、停滞時に沿 岸部の地表付近では収束場、上空 750hPa 付近で は発散場となっており、高気圧性回転場が形成さ れていた (図3)。この結果沿岸部上空は弱風場と なり降雪雲の停滞をもたらしたと考えられる。渦 度方程式を用いて渦度収支をみたところ、柏崎上 空(高度 2000m) の高気圧性渦度の形成には渦の 立ち上がり項が寄与しており(図4)、沿岸部に接 近した日本海上の収束帯が立ち上がったものと 考えられる。

5. まとめ

柏崎に大雪をもたらした帯状降雪雲は、場の北東風と季節風の下層収束により形成され、上層の発散場に伴う高気圧回転場が弱風場を形成し降雪雲を停滞させたことが示された。

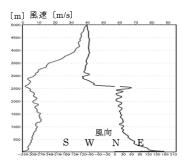


図 1. 柏崎における、ラジオゾンデ観測による風向、風速の鉛直プロファイル (1月9日21時)。

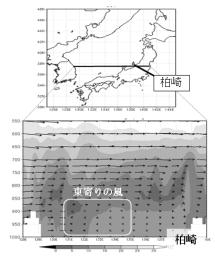


図 2. 数値実験による 1月9日21時の北緯37.5度における水平風速 (m/s) の鉛直断面図。ベクトルは東西風と鉛直風(10倍)。

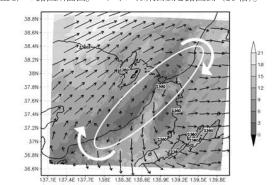


図3. 図2に同じ。但し、750hPa 面水平風速 (m/s)。

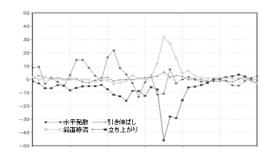


図4. 数値実験による、柏崎上空の1月9日15時 \sim 10日03時の高度2000mにおける渦度方程式各項〔 s^2 〕の時系列。

降雪種と新雪密度の定量的関係と霰と雪片の関与の違い

○ 石坂雅昭・本吉弘岐¹・山口悟¹・中井専人¹・椎名徹²・村本健一郎³ 1. 防災科研・雪氷、2. 富山高専、3. 金沢大学

1. はじめに

降雪の種類は積雪の初期密度を決める重要な要素である。しかし、降雪の複雑かつ多様な性格は降雪種と新雪密度の定量的な関係を見出すことを困難にしている。これまでの新雪密度と降雪種(特に主要な雪結晶)に関する研究(Powere et al., 1964:梶川, 1986:梶川ほか, 2005)も定性的な議論にとどまっていて、積雪モデルに反映できる定量的な関係は確立されて来なかった。そこで、筆者らは降雪粒子特性を反映した積雪モデル構築の第一歩として、降雪の種類(降雪種)と新雪密度の関係を詳細観測をもとに探ってきた。第一報は既に報告した(石坂ほか, 2013)が、ここではさらにデータを増やし、より詳細に解析した結果の中から、霰と雪片の新雪密度への関与の違いについて述べる。

2. 手法 降雪と新雪密度の同時観測

観測は2013~2015 冬季に防災科研・雪氷(長岡)の降雪粒子観測施設(FSO)で行われた。自然降雪をFSOの低温室に振り込ませ、降り積もった新雪の密度を測定すると同時に、CCD カメラの連続観測から得られる降雪の粒径と落下速度の記録から新雪堆積期間の CMF(Center of mass flux distributon;降雪粒子の降水量寄与で重み付けした平均粒径と落下速度;Ishizaka et al., 2013)を求め主要な降雪種を推定した。ほとんどのイベントは、圧密の影響が無視できる2時間以内の間に積もったもので、1分ごとのCMFからほぼ同種の降雪種からなるものを選んだ。また、降雪期間中の気温が零下の融解がない降雪イベントを対象とし、それをCMFの位置によって雪片、霰、少粒子(この中は雪片に近い小粒子と霰に近い小粒子の二つに分類)に分類した(図省略)。

3. 結果と考察

上記の分類によって図1に示すように霰を主とする新雪密度は雪片に比べ一般に大きくなる傾向が明瞭に示され、かつそれぞれ特徴のある密度への関与が明らかになった。図2の上段には霰を主とする新雪(霰新雪)の密度、下段には雪片を主とするもの(雪片新雪)をCMFの位置情報とともに示した。上段の霰のグラフ内の三本の曲線は、落下速度の小さい方から、それぞれ六花、紡錘状、塊状霰の経験曲線で、速度が大きくなるにしたがい密度の大きい(硬い)霰と考えられる。濃度の濃さで示されている新雪密度を見ると、ほぼ上記の曲線と類似の傾向で密度が大きくなっていることがわかる。すなわち、霰新雪の密度は含まれる霰そのものの密度に強く依存していることが推定される。一方、雪片新雪

では、一番密度が大きいA14と一番小さいA3の位置から わかるように、雲粒付きの度合いが大きく影響している。 霰と同じく重い雪片が大きな密度に結びついている。また、A3では粒径も大きくその効果も現れていると考えられ、雪片の場合は粒径の大きさも影響することが推定される。すなわち、粒径が大きいほど隙間の大きい構造を 取り易くなり密度が小さくなると考えられる。

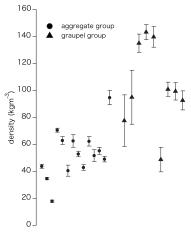


図1 霰を主とする新雪と雪片を主とする新雪の密度(観測結果)。

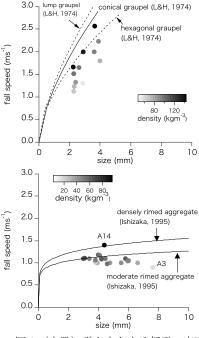


図2 (上段) 霰を主とする新雪の密度と CMFの位置。(下段) 雪片を主とする新雪 の密度と CMFの位置。

参考文献

Ishizaka et al., 2013, J. Meteor. Soc. Japan, 91,747-762. 石坂ほか, 2013, 雪氷研究大会(2013・北見)講演予稿集, 24. 梶川, 1989, 雪氷, 51, 173-183.

梶川ほか,2005,雪氷,67,213-219.

Power et al., 1964, J. Atmos. Scie., 21, 300-305.

新雪の比表面積と降雪種の関係(3)

○ 山口悟 ^{1),} 石坂雅昭 ¹⁾, 本吉弘岐 ¹⁾, 八久保晶弘 ²⁾, 青木輝夫 ³⁾ ¹⁾防災科研・雪氷, ²⁾北見工大, ³⁾気象研

1. はじめに

比表面積(SSA)は、粉体などの多孔質物質の組織構造を表す物理量の一つで、粒子のサイズだけではなく形状も反映した物理量である。そのため新雪の SSA の値は降雪結晶の形状や雲粒の付き具合にも密接に関係する量であると考えられる。そこで我々は、降雪結晶起源の雪崩の弱層の特徴を表現するパラメータとして新雪の SSA に着目し、降雪直後の新雪の SSA の測定を 2014 年より行ってきた。今回は3 冬期の測定結果から分かったことを報告する。

2. 測定方法

本研究では、圧密や焼結の影響を少なくするために、防災科学技術研究所雪氷防災研究センター(長岡市)の降雪粒子観測施設の天井の開く低温室(約-5℃)内に 1-2 時間程度の期間に堆積した新雪の SSA を測定対象とした. SSA の測定にはBET 理論を用いたメタン吸着法を用い、2014 年、2015 年、2016 年の 3 冬期にかけて計 86 事例行った. SSA と降雪種や気象要素との関係に関する解析にあたっては、CMF(Center of Mass Flux distribution)から求めた降雪種情報(+顕微鏡写真)

ならびに雪氷防災研究センターの露場で測定している1分間間隔のデータ(気温,湿度,風速,降水量)を用いた.

3. 結果

図 1 に 2015 年に測定された新雪の SSA の測定事例 (34 例) と、その事例期間中の平均気温 (T_d) を示す、小さい SSA が出現する条件の一つは T_d がプラスのために降雪粒子が融解しているためである可能性があることが分かった(灰色のハッチのケース)、ただし気温が高くても(低くても)SSA が大きい場合(小さい場合)が観測されるなど必ずしも気温が SSA に対する支配的要因ではないこともわかった。

一方 T_d がマイナスの場合にも小さい SSA を持つ降雪粒子が観測された事例(赤色のハッチのケース)もあり、それに関しては雲粒がついていない降雪種が降っている場合であることも分かった。また T_d がプラスでも SSA が大きい事例の降雪粒子はあられに近いものであった。

これらのことから新雪の SSA を決める主要因は、降雪種であることが確認された.

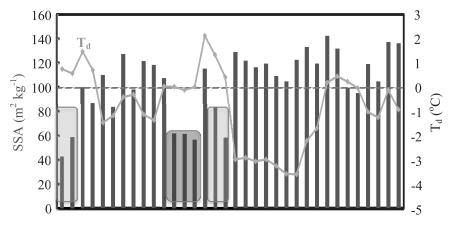


図 1 長岡で測定された新雪の比表面積(SSA)と気温(T_d)の関係 T_d は降雪事例中の平均気温

2016 年度(公社)日本雪氷学会 北信越支部

- •2015 年度事業報告
- •2015 年度収支決算報告
- •2016 年度事業計画
- •2016 年度予算
- •支部規程施行内規
- •支部表彰規程
- -2016-17 年度北信越支部役員
- •北信越支部特別•賛助•購読会員名簿

2015年度日本雪氷学会北信越支部事業報告

1. 研究発表会

2015年度北信越支部研究発表会・製品発表検討会(2015年度日本雪氷学会北信越支部大会)

日時:2015年6月6日

場所:信州大学理学部(長野県松本市)

発表件数:42件 参加者:54名

共催:信州大学理学部

2. 研修会等

2.1 講演会

「今年の雪 速報会 2014-15」

- ・「北陸地方を中心とした2014/15冬期の天候と降雪の特徴」: 河原直孝(気象庁 新潟地方気象台)
- ・「御嶽山の冬の気象・積雪・融雪と積雪期火山防災情報プラットフォーム」: 河島 克久 (新潟大学 災害・復興科学研究所)
- ・「2014/15冬期の降積雪の特徴と雪の重さについて」: 本吉 弘岐(国立研究開発法人 防災科学技術研究所 雪氷防災研究センター)
- ・「2014/15年冬期の山岳地における雪崩災害」:池田 慎二 (国立研究開発法人 土木研究所 雪崩・地すべり研究センター)
- ・「雪害・除雪記録映像アーカイブの開設」: 尾近 博 (国土交通省 北陸地方整備局 北陸技術事務所 防災・技術課)
- 「今冬の新潟県の道路除雪について」: 新保 良勝(新潟県土木部 道路管理課 雪寒事業係)
- ・「今冬発生した雪崩の特徴」: 町田 誠(町田建設株式会社)

日時:2015年5月20日(水)13:45~17:30

場所:シティーホール「アオーレ長岡」市民交流ホールB・C 西棟3階(新潟県長岡市)

参加者:106名

備考:特定非営利活動法人水環境技術研究会,国立研究開発法人防災科学技術研究所雪氷防災研究センター,一般社団法人北陸地域づくり協会との共催

2.2 見学会

第20回雪形ウォッチング 利尻大会

日時:2015年5月9日(土)~5月10日(日)

場所:北海道利尻町

参加者:62名

備考:国際雪形研究会,利尻島調査研究事業と共催

2.3 学習会

第9回 雪氷防災研究センター・新潟地方気象台合同談話会

- ・「2015年ネパール・グルカ地震で誘発されたランタン谷大雪崩調査」: 山口悟 (国立研究開発法人防 災科学技術研究所)
- ・「2014/2015年雪氷災害報告 雪氷防災研究センターで実施した災害調査-」平島寛行(国立研究開発法人防災科学技術研究所)

- ・「平成26年2月15日の南岸低気圧による、上中越の大雪の解析」: 石川治美(気象庁新潟地方気象台)
- ・「長野県の雪崩災害と気象状況」: 高橋恵美子(気象庁長野地方気象台)
- 「降雪板と積雪計による降雪深 ~積雪計観測値修正の重要性~」:長峰聡(気象庁新潟地方気象台)

日時:2015年12月17日 13時30分~17時 場所:新潟地方気象台(新潟県新潟市)

備考:防災科学技術研究所雪氷防災研究センターと新潟地方気象台との共催

2.4 講習会

積雪観測&雪結晶撮影講習会

日時:2016年2月13日(土)13時~16時30分

場所:防災科学技術研究所雪氷防災研究センター(新潟県長岡市)

参加者:16名

備考:関東・中部・西日本支部,防災科学技術研究所との共催

3. 普及 · 啓発

3.1 支部ホームページの運営(http://www.seppyo.org/hse/)

大会プログラム・予稿集の掲載、および学習会等イベントの広報などの情報を随時更新

3.2 教育普及に関する共催事業

第2回「氷の花」チンダル像の野外観測・学習会

日時:2016年1月17日

場所:セミナーハウスあいりす(石川県加賀市)

参加者:13名

備考:中谷宇吉郎雪の科学館、同友の会との共催

3.3 他学会、他団体への協賛・共催・後援等

南極観測再開50周年記念·南極0B会新潟支部設立10周年記念

「昭和基地とむすぶ南極教室」

日時:2015年8月23日(日)12:00~16:30

場所:アオーレ長岡3階協働ルーム(新潟県長岡市)

備考:南極0B会新潟支部設立10周年記念事業実行委員会主催,長岡市,長岡市教育委員会とともに後援

2015 福井雪技術研究会 講演会

日時:2015年12月18日(金)15時~17時

場所:福井大学文京キャンパス(福井県福井市)

備考:福井雪技術研究会主催,後援

4. 2015年度北信越支部賞の表彰

雪氷技術賞:安達 聖(国立研究開発法人防災科学技術研究所 雪氷防災研究センター 契約研究員)

「MRI装置を用いた濡れ雪の高分解能非破壊測定手法の研究開発」

大沼賞:島田 亙(富山大学大学院 理工学研究科 准教授)

「氷結晶の形態形成機構に関する研究」

雪氷奨励賞:佐々木 明彦(信州大学理学部 特別研究員)

「地形形成作用としての雪氷の役割に関する研究」

5. 出版事業

5.1 支部機関誌

「雪氷北信越」第35号を6月に発行した. 北信越支部ホームページにて公開.

6. 管理事項

6.1 北信越支部総会

6月6日,信州大学(理学部)

6.2 理事 • 幹事会議

第1回理事・幹事合同会議:4月30日~5月21日,文書審議

第1回理事会議:6月6日,信州大学(理学部)

第2回理事・幹事合同会議:11月12日,長岡市まちなかキャンパス 4階 創作交流室

6.3 顧問・評議員会

11月12日,長岡市 まちなかキャンパス 4階 創作交流室

2015 年度収支決算報告

			2015年度予算	執行状況	増減
			(A)	(B)	(A)-(B)
収入			85,000	64,050	20,950
会費収	入 支部会員費		0	0	0
事業収入	入 研究発表会収入		25,000	37,000	-12,000
	研修会講演会等中		10,000	8,000	2,000
_	出版収入	北信越支部機関誌	50,000	19,050	30,950
	らの繰り入れ(事業指定	E資金がある場合のみ)	0	0	0
雑収入			0	0	0
前期繰	越金(特別な理由があ	る場合のみ)	0	0	0
支出			187,000	95,816	91,184
事業費		事業費 計	102,000	79,280	22,720
	1調査・研究		0	0	0
	2研究会研修会 研	究発表会 北信越支部大会	25,000	25,000	0
	研	修会等 講演、見学、学習会	2,000	1,364	636
		及 啓発 教育普及事業	0	0	0
		賞 北信越支部褒賞費	25,000	12,520	12,480
	3出版事業 支	部機関誌 北信越支部機関誌	50,000	40,396	9,604
	そ	の他出版	0	0	0
管理費		管理費 計	85,000	16,536	68,464
	事務局費		0	6,356	-6,356
	会議費		85,000	10,180	74,820
	支払手数料		0	0	0
	役員選挙費		0	0	0
	雑費	<u> </u>	0	0	0

2016年度事業計画

1. 研究会研修会

研究発表会 研究発表会・製品発表検討会(妙高市)

研修会等

講演会2回開催する見学会1回開催する学習会3回開催する講習会1回開催する

普及・啓発 ホームページの運営

教育普及に関する事業の開催 2回開催する

褒賞 2016年度北信越支部賞の表彰

2. 出版事業

支部等機関誌 機関誌「雪氷北信越」36号の刊行

3. その他

管理事項

理事・幹事合同会議の開催 顧問・評議員会の開催

2016 年度予算

					2016年度予算	2015年度予算	増減
					(A)	(A)	(A)-(B)
収入					85,000	85,000	0
	会費収入	支部会員費			0	0	0
1	事業収入	研究発表会収	λ		25,000	25,000	0
ı		研修会講演会	等収入		10,000	10,000	0
Ι.		出版収入		北信越支部機関誌	50,000	50,000	0
		繰り入れ(事業	指定資金があ	る場合のみ)	0	0	0
	雑収入				0	0	0
	前期繰越金	会(特別な理由が	ある場合のみ	,)	0	0	0
支出					220,000	187,000	33,000
1 .	事業費			事業費 計	127,000	102,000	25,000
		1調査・研究			0	0	0
1		2研究会研修会		北信越支部大会	25,000	25,000	0
1			研修会等	講演、見学、学習会	2,000	2,000	0
1			普及·啓発	教育普及事業	25,000	0	25,000
1			褒賞	北信越支部褒賞費	25,000	25,000	0
1		3出版事業	支部機関誌	北信越支部機関誌	50,000	50,000	0
I .			その他出版		0	0	0
I .	管理費			管理費 計	93,000	85,000	8,000
		事務局費			8,000	0	8,000
ı		会議費			85,000	85,000	0
I		支払手数料			0	0	0
ı		役員選挙費			0	0	0
		雑費			0	0	0

公益社団法人日本雪氷学会北信越支部 支部規程施行内規

- 第1条 本支部は、公益社団法人日本雪氷学会支部規程第1条に基づき、公益社団法人日本雪氷学会北信越支部と称する.
- 第2条 本内規は、支部規程第2条2項に基づき、本支部における支部規程の施行に必要な事項を定めるものである。
- 第3条 本支部の会員は、北信越地方(新潟県、長野県、富山県、石川県、福井県)に在住する公益社団法 人日本雪氷学会の会員とする。また、他支部に所属する会員であっても、本支部に所属することを希 望する場合は、重複所属することを妨げない。
- 第4条 本支部に次の役員をおく.

 支部長
 1名

 副支部長
 若干名

 支部顧問
 若干名

 支部評議員
 若干名

支部理事 若干名(副支部長,幹事長を含む)

 支部監事
 2名

 支部幹事
 若干名

- 第5条 支部長は、支部からの推薦に基づき、定款施行細則第28条により、定款第20条に定める理事の中から理事会において選出する.
- 第6条 副支部長、支部理事および支部監事は支部総会において、支部会員の中から選任する.
- 第7条 支部の幹事長は支部理事の中から支部長が委嘱する. 支部幹事は支部会員の中から支部長が委嘱する.
- 第8条 支部長は本支部を代表しその会務を総理する.
- 第9条 副支部長は支部長に事故ある場合、その職務を代行する.
- 第 10 条 支部理事会は支部長、副支部長、支部理事で構成され、支部会務執行に必要な協議を行う. 支部 理事会の議長は支部長とする.
- 第11条 支部監事は支部の事業ならびに会計を監査する.
- 第 12 条 支部幹事会は幹事長、幹事で構成され、支部長の命を受けて支部事業の企画及び会計ならびにその他の会務を処理する。
- 第 13 条 支部長の任期は2年とする. ただし連続する2期を超えて在任することはできない. 支部長を除く役員の任期は2年とする. ただし再任を妨げない. その他は定款第24条の定めるところによる.
- 第 14 条 支部顧問および支部評議員は支部理事会の議決を経て支部長がこれを委嘱する. 支部顧問及び支部評議員は本支部の発展に寄与するものとする.
- 第15条 本支部は毎年1回定時総会を開くほか必要に応じ臨時総会を開く.
- 第16条 総会においては下記事項の承認を受けなればならない.

事業報告·収支決算報告

事業計画・予算案

役員の決定

支部規程施行内規の変更

その他重要な事項

第17条 本支部の事業年度は毎年4月より翌年3月までとする.

附則

本内規は2013年5月11日より施行する.

(公社)日本雪氷学会北信越支部表彰規程

- 1. 本規程は、主として北信越地方において雪氷に関し下記の貢献をした者を表彰することを目的とする.
- 2. 支部長は、受賞者を選定するために受賞候補者選定委員会(以降、委員会という)を設ける.
- 3. 委員会は、数名をもって組織し、支部長が会員の中からこれを委嘱する.
- 4. 支部長は、毎年会員に下記の賞に該当する候補者の推薦を求める.
 - (1) 雪氷技術賞:克雪・利雪に有効な新しい技術を確立したものに贈る.
 - (2) 大沼賞:長年にわたる観測データの集録など、雪氷に関する地道な貢献を行ったもの、もしくは雪氷研究に関して斬新なアイデアを生みだしたものに贈る.
 - (3) 雪氷奨励賞:雪氷学の研究に顕著な成果をあげ、今後の発展を奨励することが適当と考えられるものに贈る.
 - (4) 雪氷功労賞:支部の発展に著しい貢献をしたものに贈る.
 - ここで、雪氷技術賞、大沼賞の受賞者は本規程の趣旨に添う者であれば、会員・非会 員を問わないものとする.

雪氷奨励賞と雪氷功労賞の受賞者は会員に限るものとする.

- 5. 候補者の推薦は、下記の項目を記載した書類を支部事務局に提出するものとし、その 締め切りを毎年3月15日とする.
 - (1) 雪氷技術賞、大沼賞、雪氷奨励賞、雪氷功労賞の区別
 - (2) 推薦者の氏名, 所属, 職名
 - (3) 受賞候補者の氏名(または団体名), 所属, 職名.
 - (4) 推薦理由書(○○○の功績, などの受賞表題を挙げ, 800 字ほどにまとめたもの).
 - (5) 上記の理由書を証明する関係書類があれば添付する.
- 6. 委員会は,推薦書類を検討し,その年の受賞者を項目ごとに 1~2 件選定し,支部長に報告する.受賞者は,支部理事会の承認を得て決定する.
- 7. 各賞は賞状とし、支部定時総会においてこれを贈呈する.

附則

本規程は2013年5月11日より施行する.

本規程は2016年6月4日に改正する.

2015-16年度(公社)日本雪氷学会北信越支部役員

支部長

和泉 薫* NPO 法人なだれ防災技術フォーラム副理事長

副支部長

飯田 肇 立山カルデラ砂防博物館学芸課長

上石 勲 防災科学技術研究所雪氷防災研究センター長

支部顧問

 泉田裕彦
 新潟県知事

 石井隆一
 富山県知事

 大塚昇一
 小千谷市長

 関口芳史
 十日町市長

 宮元 陸
 加賀市長

梅村晃由 梅村研究開発事務所所長/長岡技術科学大学名誉教授

河田脩二 金沢大学名誉教授

神田健三 中谷宇吉郎雪の科学館友の会会長

小林俊一 新潟大学名誉教授 対馬勝年 富山大学名誉教授

早川典生 NPO 法人水環境技術研究会理事長/長岡技術科学大学名誉教授

支部評議員

植田拓郎 新潟県総務管理部長

村椿 晃 富山県生活環境文化部長

羽毛田昌敏 小千谷市建設課長 池田 克也 十日町市建設部長

廣瀬幸雄 中谷宇吉郎雪の科学館館長

池野正志 (株) 興和常務取締役技術本部長/新潟県融雪技術協会技術委員長

遠藤八十一 元森林総合研究所十日町試験地主任 川田邦夫 雪環境研究塾塾長/富山大学名誉教授

佐藤和秀 長岡工業高等専門学校名誉教授

島田英俊 北陸電力 (株) 電力流通部送電チーム統括課長 下村忠一 NPO 法人なだれ防災技術フォーラム理事長

杉森正義 山田技研(株)技術顧問 古川征夫 (株)アルゴス代表取締役 丸山敏介 新潟電機(株)代表取締役 横山宏太郎 元中央農業総合研究センター 和田 惇 元北陸建設弘済会理事長

支部理事 (*本部理事)

石田孝司 土木研究所雪崩・地すべり研究センター

上村靖司 長岡技術科学大学機械創造工学専攻

河島克久* 新潟大学災害·復興科学研究所

熊倉俊郎 長岡技術科学大学環境社会基盤工学専攻 佐藤篤司* 元防災科学技術研究所雪氷防災研究センター 杉浦幸之助* 富山大学極東地域研究センター

鈴木啓助 信州大学理学部 高田英治 富山高等専門学校

竹井 巌 北陸大学教育能力開発センター 竹内由香里* 森林総合研究所森林防災研究領域

中井専人 防災科学技術研究所雪氷防災研究センター

長峰 聡 新潟地方気象台観測予報課 前田博司 福井工業大学建設工学科

宮崎伸夫 (有)クライメットエンジニアリング

山口 悟 防災科学技術研究所雪氷防災研究センター

山田忠幸 山田技研株式会社

支部監事

石坂雅昭

町田 誠 町田建設(株)

支部幹事長

竹内由香里 森林総合研究所森林防災研究領域

支部幹事 1)庶務, 2)会計, 3)雪氷北信越編集, 4)支部だより, 5)**HP** の各担当者

伊藤陽一 防災科学技術研究所雪氷防災研究センター

小川克昌 (有)アサップ

勝島隆史2) 森林総合研究所森林防災研究領域

加藤 務 テクノかとう

加藤正明 長岡市立科学博物館 木戸瑞佳 富山県環境科学センター

不戸姉住 - 畠山県環境科学センター 齋藤隆幸 (株)スノーテック新潟

佐々木明彦 信州大学理学部

島田 亙 富山大学大学院理工学研究部

瀬戸民枝 新潟県新潟地域振興局新津地域整備部計画調整課

浜田 崇 長野県環境保全研究所

坂東和郎 (株) 興和水工部次長/新潟県融雪技術協会 平島寛行 防災科学技術研究所雪氷防災研究センター

福井幸太郎 立山カルデラ砂防博物館

 藤野丈志
 (株) 興和水工部

 本田明治
 新潟大学理学部

 町田 敬 4)
 町田建設(株)

松元高峰 3) 新潟大学災害・復興科学研究所 皆巳幸也 石川県立大学生物資源環境学部

村井昭夫 金沢市立内川中学校

本吉弘岐1) 防災科学技術研究所雪氷防災研究センター

渡辺幸一5) 富山県立大学工学部

性四人 是 (5)

北信越支部 特別・賛助・購読会員名簿

<u> 特別会員(5)</u>			
富山県	930-8501	富山市新総曲輪1-7	生活環境文化部県民生活課 水雪土地対策班
新 潟 県	950-0965	新潟市中央区新光町4-1	総務管理部地域政策課雪対策室
小 千 谷 市	947-8501	小千谷市城内2-7-5	建設課
加賀市	922-0411	加賀市潮津町イ106	中谷宇吉郎雪の科学館
十日町市	948-8501	十日町市千歳町3-3	建設課
賛助会員(11)			
(株)アルゴス		944-0009	妙高市東陽町1-1
(株)上越商会		943-8616	上越市大字土橋1012
(有)アサップ		944-0005	妙高市中川3-5
(有)クライメットエンジニアリング		948-0103	十日町市小泉1834-23
(株)興和		950-8565	新潟市中央区新光町6番町1
(株)上越観光開発		949-6431	南魚沼市樺野沢112-1
長岡舗道(株)		940-2115	長岡市下山町651-1
新潟電機(株)		940-1101	長岡市沢田1-3535-41
北陸電力 (株)		930-8686	富山市牛島町15-1
(株)星野工業		946-0024	魚沼市中原65-1
町田建設(株)		949-6407	南魚沼市島新田374
購読会員(15)			
石川県林業試験場		920-2114	白山市三宮町ホ1
国土交通省北陸地方整備局 契約課購買係		950-8801	新潟市中央区美咲町1-1-1
国土交通省北陸地方整備局 北陸技術事務	所	950-1101	新潟市西区山田2310-5
清明堂書店 外商部		930-0083	富山市総曲輪3-2-24
富山県農林水産総合技術センター 森林研	f 究所	930-1362	中新川郡立山町吉峰3
長野県林業総合センター		399-0711	塩尻市大字片丘字狐久保5739
新潟県森林研究所		958-0264	岩船郡朝日村大字鵜渡路2249-5
新潟大学 学術情報部		950-2181	新潟市西区五十嵐二の町8050

950-0954

930-0892

950-0916

910-8505

910-0017

新潟市中央区美咲町1-2-1

富山市石坂2415番地4

福井市学園3-6-1

新潟市中央区米山5-1-35 カレント・さくらビル2F

新潟美咲合同庁舎2号館 9·10F

新潟地方気象台 総務課

福井工業大学 図書館

福井雪技術研究会

一般財団法人日本気象協会 北陸支店

(株)ネクスコ・エンジニアリング新潟

編集後記

「雪氷北信越」の編集委員を前任の伊豫部勉さんから引き継いでまだ日が浅く、初めての編集作業で慣れないことばかりではありましたが、ここに何とか第36号を発行することができました。お忙しい中、原稿をお寄せいただいた方々には心より御礼を申し上げます。また編集に当たっては支部長、幹事長、幹事ほか役員の方々、そして前任者の伊豫部さんにもたいへんお世話になりました。本当にありがとうございます。

さて今年の支部総会・研究発表会は 6 月 4 日に新潟県妙高市の勤労者研修センターで開催されました。実行委員の方々や関係者の皆様の御陰をもちまして、37 件の発表、50 名の参加者という盛会になりました。しかしそれだけに、本来であれば地元の新井における催しで八面六臂の大活躍を見せて下さったに違いない池田慎二さんの不在が、埋めようのない寂しさとして感じられました。改めて池田さんの御冥福をお祈りしたいと思います。

この「雪氷北信越」は第 28 号より電子出版を開始し、支部のホームページにて公開されています。併せてこれまでと同様に印刷冊子での出版も継続し、北信越地区の特別・賛助・購読会員の皆様へ進呈するとともに、支部内外を問わず御希望の方には有料で頒布しております。「雪氷北信越」が広く活用されることを願っております。 (松元 高峰)

編集委員:勝島 隆史, 竹内 由香里(委員長), 町田 敬, 松元 高峰, 本吉 弘岐, 渡辺 幸一

(公社) 日本雪氷学会北信越支部ホームページ http://www.seppyo.org/hse/

SEPPYO HOKUSHIN'ETSU

Journal of Hokushin'etsu Branch of Japanese Society of Snow and Ice

No. 36 June 2016

Editor and Publisher: Hokushin'etsu Branch, Japanese Society of Snow and Ice Office: Tohkamachi Experimental Station, Forestry and Forest Products Research Institute 614, Tatsu-otsu, Tohkamachi, 948-0013, Japan

雪氷北信越 第36号

編集・発行:(公社) 日本雪氷学会 北信越支部

事務局:〒948-0013 十日町市辰乙614 (研)森林総合研究所十日町試験地内

印刷所: 共立印刷株式会社 〒950-0971 新潟市中央区近江2丁目16番15号

発行年月日: 2016年6月30日

©2016(公社)日本雪氷学会

掲載された記事の著作権は(公社)日本雪氷学会に属する.

(表紙題字:大沼匡之)